Основные этапы экономико-математического моделирования. Экономико-математическое моделирование (4) - Реферат

Экономико-математическое моделирование - это исследование экономики, ее систем с применением экономических и математических дисциплин. ЭММ изучает количественные взаимосвязи и закономерности с использованием научных методов. Таким образом, моделировать можно объект любой сложности и получить результат, которого нельзя добиться другими способами.

Одноэтапные и двухэтапные схемы ;

Проводятся расчеты с помощью теории игр;

Используется для расчетов теория управления запасами;

Проводятся расчеты с помощью сетевого планирования;

Используется для расчетов теория массового обслуживания.

Для решения проблемы также необходимо:

1. Знание экономической теории, то есть законов, закономерностей развития экономического общества.

2. Знание сущности проблемы.

3. Знание приемов и методов исследования, изучающихся в статистике, эконометрике, экономике и т.д.

4. Знание компьютера и владение пакетом прикладных программ.

Моделирование любого экономического явления состоит из ряда этапов.

Первый этап посвящен постановке проблемы. Обычно перед исследователем стоит большое число разнообразных проблем, причем формулируются они в довольно общих чертах. Цель первого этапа исследования экономических процессов – найти среди проблем такие вопросы, которые могут быть решены на современном уровне развития экономико-математических методов. При этом можно воспользоваться либо уже существующими моделями, либо, если таких моделей нет, то построить собственную модель интересующих объектов.

После того, как сформулирована проблема, которая стоит перед исследователем, можно приступать к следующему, второму этапу исследования – построению математической модели изучаемого экономического объекта и ее идентификации. Этот этап состоит в выборе подходящей модели из совокупности экономических моделей и в подборе параметров этой модели таким образом, чтобы она соответствовала изучаемому объекту.

Третий этап – исследование модели. Предварительно необходимо выбрать способ анализа модели для решения проблем, сформулированных на первом этапе исследования, и вариантов управления экономической системой.

Существует несколько основных методов анализа экономических моделей. Первый из них состоит в качественном анализе модели, то есть в выяснении некоторых ее свойств. Хотя методы качественного анализа очень полезны, такое исследование можно провести лишь в достаточно простых моделях. Также поставленную задачу можно решить одним из методов быстро развивающегося в последнее время раздела прикладной математики – методов оптимизации . Однако даже в случае единственного критерия задачу оптимизации удается решить далеко не всегда: модель может оказаться чересчур большой или чересчур сложной для современных методов оптимизации.

Для анализа экономико-математических моделей широко используется имитационный подход , на основе которого удается преодолеть некоторые из трудностей, связанных с использованием оптимизационного подхода. В имитационном подходе не требуется заранее задавать критерий развития изучаемого объекта. Вместо него задается управление. Сформулировав заранее некоторое число вариантов управления, можно построить траекторию системы для каждого из вариантов. В этом Подходе вместо проблемы формулировки единственного критерия возникает проблема вариантов управления, которые будут изучаться в исследовании. В последнее время появился еще один подход, предназначенный для оценки возможностей системы в целом, при всех допустимых управлениях – подход на основе множеств допустимости . Множеством допустимости для системы называется множество всех таких состояний, в которые систему можно привести при помощи допустимого управления из начальной точки за определенный промежуток времени.



Таким образом, современный этап развития методов анализа моделей экономического объекта характеризуется определенным уровнем зрелости. Отдельные идеи заняли соответствующее место в системе методов исследования, стали ясны области их наиболее целесообразного использования.

Моделирование – мысленное построение идеальных моделей тех или иных явлений, процессов и их изучение в различных условиях. Моделирование – способ воспроизведения некоего объекта или его характеристик на другом объекте, специально созданном для его научного исследования. Научные модели не являются материальными. Они конструируются теоретически на основе абстрагирования, идеализации явления, процесса, системы. При этом фиксируются лишь существенные компоненты, элементы, характеристики объекта исследования, а затем путем идеализации. Создается некая мыслительная конструкция, исключающая ряд элементов, характеристик, свойств данного явления, процесса. Системы. Иначе говоря, модель – не зеркальное отражение оригинала, а во многом его абстрактная схема.

Модель – абстракция, но она базируется на реальности, служит в конечном счете ее преобразованию, совершенствованию. Модель – это упрощенное формальное описание, которое используется для изучения различных явлений.

Виды модели классифицируются на основе различных характеристик: по характеру моделируемого объекта, по сфере приложения, по глубине моделирования.



По характеру модели делятся на материальные и идеальные. При материальном моделировании исследование ведется на основе модели, воспроизводящей основные характеристики изучаемого объекта. Частными случаями материального моделирования является физическое моделирование .

Идеальное моделирование основано не на материальной аналогии моделируемых объектов, а на аналогии идеальной, мысленной. Разновидностью идеального моделирования является знаковое , в котором моделями служат знаковые образования какого-либо вида (схемы, графики, формулы). Важным видом знакового моделирования является математическое моделирование , осуществляемое средствами языка математики и логики. Математическая модель объекта – это его отображение в виде совокупности уравнений, неравенств, логических отношений, графиков.

Другой разновидностью идеального моделирования является интуитивное моделирование , в котором не используются четко фиксированные знаковые системы.

Математические модели , используемые в экономике, можно подразделять на классы по ряду признаков, относящихся к особенностям моделируемого объекта, цели моделирования и используемого инструментария: модели макро- и микроэкономические, теоретические и прикладные, оптимизационные и равновесные, статические и динамические.

Макроэкономические модели описывают экономику как единое целое, связывая между собой укрупненные материальные и финансовые показатели.

Теоретические модели позволяют изучать общие свойства экономики и ее характерных элементов дедукцией выводов из формальных предпосылок. Прикладные модели дают возможность оценить параметры функционирования конкретного экономического объекта и сформулировать рекомендации для принятия практических решений.

Равновесные модели описывают такие состояния экономики, когда результирующая всех сил, стремящихся вывести ее из данного состояния, равна нулю.

В моделях статических описывается состояние экономического объекта в конкретный момент или период времени. Динамические модели включают взаимосвязи переменных во времени, описывают силы и взаимодействия в экономике, определяющие ход процессов в ней.

56. Особенности математического моделирования экономических явлений .

Для того чтобы правильно оценить состояние и перспективы математических моделей в экономических исследованиях, полезно сопоставить их развитие с опытом применения математического моделирования в физике, где этот метод возник, получил свое развитие и откуда он начал проникать в другие отрасли человеческого знания. На протяжении столетий физика с успехом использует математические модели. Модели, основанные, скажем, на принципах ньютоновской механики, уже три века надежно служат человечеству, давая необходимую расчетную базу в его практической деятельности. Более того, прогресс самой математики в значительной степени связан с исследованием разнообразных физических моделей. За триста лет совместной активной деятельности многих поколений физиков и математиков удалось построить стройное здание – систему математических моделей физических процессов, где все этажи тесно связаны между собой, причем многие модели связаны надежными логическими переходами. Математическое моделирование экономических явлений в значительной мере отличается от физического. Дело осложняется в первую очередь тем, что экономика охватывает не только производственные процессы, но и производственные отношения. Моделирование производственных процессов не представляет принципиальных трудностей и не намного сложнее, чем моделирование физических процессов. Моделировать же производственные отношения невозможно, не учитывая поведения людей, их интересов и индивидуально принятых решений. Для описания функционирования экономической системы можно выделить два основных уровня экономических процессов.

Первый уровень – производственно- технологический. К нему относятся описание производственных возможностей изучаемых экономических систем. При моделировании производственных возможностей системы ее обычно разбивают на отдельные, «элементарные», в данной модели, производственные единицы. После этого необходимо описать, во-первых, производственные возможности каждой из единиц, и, во-вторых, возможности обмена ресурсами производства и продукцией между «элементарными» производственными единицами. Производственные возможности описываются при помощи так называемых производственных функций различных типов, а при описании возможностей обмена главную роль играют балансовые соотношения .

На втором уровне – уровне социально- экономических процессов – определяется, каким образом реализуются производственные возможности, описанные при моделировании производственно-технологического уровня экономической системы. Дело в том, что обычно технологические ограничения сами по себе не определяют полностью развития экономического процесса. Существует множество вариантов распределения заданий, укладывающихся в технологические ограничения, которые задают производственные возможности системы. В математических моделях выделяют специальные переменные, значения которых определяют единственный вариант развития экономического процесса. Эти переменные принято называть управляющими воздействиями или управлениями . На уровне социально-экономических процессов определяется механизм выбора управляющих воздействий.

Есть, однако, большое число проблем, в которых описание социально-экономического уровня не является необходимым. Это, так называемые, нормативные проблемы , в которых указывается, как надо задать управление, чтобы достичь наилучших в каком-то смысле результатов. При этом необходимо точно определить, что понимается под наилучшим результатом, то есть сформулировать критерий (целевую функцию), по которому можно оценивать и сравнивать различные управления. Определяется такое управление, при котором критерий достигал бы экстремального значения. Такое значение управления находится методами оптимизации и называется оптимальным .

Важную роль в моделировании экономических явлений играют исходные предложения, на которых строятся модели экономических систем. Известный естествоиспытатель Гексли сказал, что «математика подобно жернову перемалывает то, что под него засыпают, и подобно тому, как нельзя рассчитывать получить доброкачественную муку, засыпав под жернов плевелы, нельзя рассчитывать с помощью математики получить временный результат из неверных предпосылок».

Этапы экономико-математического моделирования

Процесс моделирования, в том числе и экономико-математического, включает в себя три структурных элемента: объект исследования; субъект (исследователь); модель, опосредующую отношения между познающим субъектом и познаваемым объектом.

Рассмотрим общую схему процесса моделирования, состоящую из 4 этапов.

1. Этап построения модели предполагает наличие определенных сведений об объекте-оригинале. Познавательные возможности модели определяются тем, что модель отображает лишь некоторые существенные черты исходного объекта, поэтому любая модель замещает оригинал в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько моделей, отражающих определенные стороны исследуемого объекта или характеризующих его с разной степенью детализации.

2. Реализация модели . На данном этапе осуществляется изучение поведения модели в результате изменения условия, в которых она реализуется.

3. Перенос полученного решения на оригинал.

4. Практическая проверка полученных с помощью модели знаний и их использование как для построения обобщающей теории реального объекта, так и для его целенаправленного преобразования или управления им.

Моделирование представляет собой циклический процесс, то есть за первым четырехэтапным циклом может последовать второй, третий и т.д. При этом знания об исследуемом объекте расширяются и уточняются, а первоначально построенная модель постепенно совершенствуется.

Экономико-математическое моделирование обладает рядом существенных особенностей, связанных как с объектом моделирования, так и с применяемыми аппаратом и средствами моделирования. Процесс экономико-математического моделирования состоит из 6 этапов.

1. Постановка экономической проблемы и ее качественный анализ. На этом этапе требуется сформулировать сущность проблемы, принимаемые предпосылки и допущения. Необходимо выделить важнейшие черты и свойства моделируемого объекта, изучить его структуру и взаимосвязь его элементов, хотя бы предварительно сформулировать гипотезы, объясняющие поведение и развитие объекта.

2.Построение математической модели. Это этап формализации экономической проблемы, то есть выражения ее в виде конкретных математических зависимостей (функций, уравнений, неравенств и др.). Необходимо определить тип экономико-математической модели, изучить возможности ее применения в данной задаче, уточнить конкретный перечень переменных и параметров и форм связей.

3. Математический анализ модели. На этом этапе чисто математическими приемами исследования выявляются общие свойства модели и ее решений. В частности, важным моментом является доказательство существования решения сформулированной задачи. При аналитическом исследовании выясняется, единственно ли решение, какие переменные могут входить в решение, в каких пределах они изменяются, каковы тенденции их изменения и т.д.

4. Подготовка исходной информации. В экономических задачах это наиболее трудоемкий этап моделирования, так как дело не сводится к пассивному сбору данных. Математическое моделирование предъявляет жесткие требования к системе информации; при этом надо принимать во внимание не только принципиальную возможность подготовки информации требуемого качества, но и затраты на подготовку информационных массивов. В процессе подготовки информации используются методы теории вероятностей, теоретической и математической статистики для организации выборочных обследований, оценки достоверности данных и т.д. При системном экономико-математическом моделировании результаты функционирования одних моделей служат исходной информацией для других.

5. Численное решение. Численное решение существенно дополняет результаты аналитического исследования, а для многих моделей является единственно возможным.

6. Анализ численных результатов и их применение. На этом этапе прежде всего решается важнейший вопрос о правильности и полноте результатов моделирования и применимости их как в практической деятельности так и в целях усовершенствования модели. Поэтому в первую очередь должна быть проведена проверка адекватности модели по тем свойствам, которые выбраны в качестве существенных.

Перечисленные этапы экономико-математического моделирования находятся в тесной взаимосвязи, в частности, могут иметь место возвратные связи этапов.

Введение……………………………………………………………………….Стр.

1. Основы этапы и цели моделирования……………………… Стр.

1.1. Постановка цели моделирования……………………………………….Стр.

1.2. Идентификация реальных объектов...................................... Стр.

1.3. Выбор вида моделей……………………………………………………Стр.

1.4. Выбор математической схемы………………………………………….Стр.

2. Построение непрерывно-стахостической модели…… Стр.

2.1. Основные понятия теории массового обслуживания………………. Стр.

2.2. Определение потока событий……………………………………………Стр.

2.3. Постановка алгоритмов ……………………………..………………….Стр.

3. Программная реализация модели………………………….… Стр.

3.1. Оптимизация алгоритма………………………………..……………….Стр.

3.2. Листинг программы………..……………………………………………Стр.

Вывод…………………………………………………………………………Стр.

Список используемой литературы……………………………….. Стр.

Приложение…………………………………………………………………..Стр.

Введение

Современное состояние общества характеризуется внедрением достижений научно-технического прогресса во все сферы деятельности. Переживаемый в настоящее время этап развития является этапом информатизации. Информатизация - это процесс создания, развития и все-общего применения информационных средств и технологий, обеспечивающих кардинальное улучшение качества труда и условий жизни в обществе. Информатизация тесно связана с внедрением информационно-вычислительных систем, с повышением уровня автоматизации орга-низационно-экономической, технологической, административно-хозяй-ственной, проектно-конструкторской, научно-исследовательской и других видов деятельности. Создание сложных технических систем, проектирование и управление сложными комплексами, анализ экологической ситуации, особенно в условиях агрессивного техногенного воздействия, исследование социальных проблем коллективов, планирование развития регионов и многие другие направления деятельности требуют организации исследований, которые имеют нетрадиционный характер. По ряду специфических признаков все перечисленные объекты прикладной деятельности обладают свойствами больших систем. Таким образом, в различных сферах деятельности приходится сталкиваться с понятиями больших или сложных систем.

В разных сферах практической деятельности развивались соответствующие методы анализа и синтеза сложных систем. Системность стала не только теоретической категорией, но и аспектом практической деятельности. Ввиду того, что сложные системы стали предметом изучения, проектирования и управления, потребовалось обобщение методов исследования систем. Появилась объективная необходимость в возникновении прикладной науки, устанавливающей связь между абстрактными теориями системности и системной практикой. В последнее время это движение оформилось в науку, которая получила название «системный анализ».

Особенности современного системного анализа вытекают из самой природы сложных систем. Имея в качестве цели ликвидацию проблемы или, как минимум, выяснение ее причин, системный анализ привлекает для этого широкий спектр средств, использует возможности различных наук и практических сфер деятельности. Являясь по существу прикладной диалектикой, системный анализ придает большое значение методологическим аспектам любого системного исследования. С другой стороны, прикладная направленность системного анализа приводит к необходимости использования всех современных средств научных исследований - математики, вычислительной техники, моделирования, натурных наблюдений и экспериментов.

Системный анализ является меж- и наддисциплннарным курсом, обобщающим методологию исследования сложных технических, природных и социальных систем. Для проведения анализа и синтеза сложных систем используется широкий спектр математических методов. Основу математического аппарата данной дисциплины составляют линейное и нелинейное программирование, теория принятия решений, теория игр, имитационное моделирование, теория массового обслуживания, теория статистических выводов и т.п.

Основы цели, проблемы и этапы моделирования

Основная общая цель моделирования заключается в наблюдении за системой, подверженной воздействию внешних или внутренних факторов при достижении системой определенного состоянии, которое может быть как задано, так и неизвестно, из-за отсутствия информации или по каким либо иным причинам. Моделирование позволяет определить сможет ли система функционировать при таких условиях или нет, во время этого перехода. В зависимости от реальной модели и цели расширяются и конкретизируются.

Определение качества функционирования большой системы, выбор оптимальной структуры и алгоритма поведения, построение системы в соответствие с поставленной перед ней целью - главная проблема при проектировании современных больших систем (в том числе и АСУ, САПР, АСНI).

Поэтому, моделирование - один из методов, которые используются при проектировании и исследовании больших систем. Моделирование осуществляется через эксперимент - процедуру организации и наблюдения каких-нибудь явлений, которые осуществляются в условиях, близким к действительным, или имитируют их.

Различают два типа экспериментов:

1. пассивный, когда исследователь наблюдает процесс, не вмешиваясь в него;

2. активный, когда наблюдатель вмешивается и организовывает прохождение процесса.

В основе моделирования лежат информационные процессы:

v создание модели M базируется на информации о реальном объекте;

v при реализации модели получается информация о данном объекте;

v в процессе эксперимента с моделью вводится управляющая информация;

v полученные данные обрабатываются.

Как объект моделирования мы рассматриваем сложные организационно-технические системы, которые относятся к классу больших систем.

Модель М такой системы так же становится частью системы S(M) и может относиться к классу больших систем.

Следует также заметить, что модель большой системы описывается следующими критериями:

1. ЦЕЛЬ ФУНКЦИОНИРОВАНИЯ. Определяет степень целенаправленности поведения модели М. Модели делятся на одноцелевые (для решения одной задачи) и многоцелевые (рассматривают ряд сторон объекта).

2. СЛОЖНОСТЬ. Оценивается числом элементов и связей между ними, иерархию связей, множеством входов и выходов и т.д.

3. ЦЕЛОСТНОСТЬ. Модель М, которая создается, является одной целостной системой S(M), включает в себя большое количество составных частей (экспериментов), которые находятся в сложной взаимосвязи. Характеризуется появлением новых свойств, отсутствующих у элементов (эмерджентность).

4. НЕОПРЕДЕЛЕННОСТЬ. Проявляется в системе: по состоянию системы, возможности достижения поставленной цели, методом решения задач, достоверности исходной информации и т.д. Главная характеристика неопределенности это такая мера информации как энтропия.

5. ПОВЕДЕНЧЕСКАЯ КАЗНЬ. Позволяет оценить эффективность достижения системой S поставленной цели. Применяя к М, позволяет оценить эффективность М и точность, и достоверность результатов.

6. АДАПТИВНОСТЬ. Это свойство высокоорганизованной системы. Благодаря ей S адаптируется к внешним раздражителям в широком диапазоне изменения действий Е. Применяя к модели М важна ее адаптация к внешним условиям, близким к реальным, а также вопрос существования М, и ее живучести и надежности.

7. ОРГАНИЗАЦИОННАЯ СТРУКТУРА СИСТЕМЫ МОДЕЛИРОВАНИЯ. Зависит от сложности модели и степени совершенствования средств моделирования. Одним из главных достижений в области моделирования - это возможность использования имитационных моделей для проведения машинных экспериментов.

Здесь нужны:

v оптимальная организационная структура комплекса технических средств

v информационного

v математического и программного обеспечения системы моделирования S`(М)

v оптимальная организация процесса моделирования (время моделирования и точность результата).

8. УПРАВЛЯЕМОСТЬ МОДЕЛИ. Необходимо обеспечить управление со стороны экспериментаторов при имитации разных условий прохождения процесса. Управляемость S связана со степенью автоматизации моделирования (программные средства и средства диалога).

9. ВОЗМОЖНОСТЬ РАЗВИТИЯ МОДЕЛИ. Современный уровень науки и техники позволяет создавать мощные системы моделирования S(M) для исследования многих сторон функционирования реального объекта. Необходимо предвидеть возможность развития S(M) как по горизонтали, расширяя спектр изучаемых функций, так и по вертикали, расширяя число подсистем.

В целом проблема моделирования сложной системы - это комплекс сложных научно-технических задач.

При создании рассматривают следующие основные этапы:

v определение цели моделирования;

v идентификация реальных объектов;

v выбор вида моделей;

v построение моделей и их машинная реализация

v взаимодействие исследователя с моделью в ходе машинного эксперимента

v проверка правильности полученных в ходе моделирования результатов

v определение главных закономерностей, исследуемых при моделировании

Теперь же перейдем непосредственно к созданию модели по конкретно поставленному заданию.

Постановка цели моделирования

Постановка задачи, построение содержательной модели - творческий процесс, основанный на возможностях и знаниях исследователя, базируется на эвристике.

Изучив задание, можно выделить следующие цели создания модели:

1. Определение производительности второго цикла обработки деталей;

2. При каком условии возможно повышение загрузки второго станка и снижение уровня задела на втором цикле обработки;

Идентификация реальных объектов

На этом этапе осуществляется определение основных элементов реальной системы, и привязка их к образным понятиям модели с дальнейшим конкретизированием и конвертированием в математическое представление на стадии расширения алгоритма программной реализации.

Для начала определим, что это вообще берется за понятие системы. Исходя из поставленной задачи, под системой подразумевается автоматизированный конвейер обработки деталей в машинном цехе, воздействие на систему с внешней среды не осуществляется, а внутреннее производится непосредственно над деталями (первичная и вторичная обработка) и станками (уровень загрузки и производительности).

Далее определим входные и выходные элементы системы, для модели это будет входная и выходная информация. За входные элементы примем детали, а точнее количество этих деталей. За выходные - производительность станков на втором уровне обработки (я не принимаю уровень загрузки сборщика брака, т.к. это можно определить по производительности).

Так же можно сразу разбить систему на две подсистемы (это в дальнейшем упростит программную реализацию): систему первичной обработки деталей и систему вторичной обработки брака. Так как известно, что бракованные детали не могут обрабатываться дважды нет необходимости в дальнейшем дроблении.

Выбор вида моделей

Виды моделей можно классифицировать следующим способом:

детерминированное стохастическое

статическое динамическое

дискретное дискретно-непрерывное непрерывное

мысленное (абстрактное) реальное (материальное)

наглядное, символическое, математическое, натурное физическое

В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены на: детерминированные и стохастические; статические и динамические; дискретные, непрерывные и дискретно- непрерывные.

Детерминированное моделирование отображает детерминированные процессы, то есть процессы, в которых предвидится отсутствие всяких случайных влияний.

Стохастическое моделирование отображает вероятностные процессы и случаи. Анализируется ряд реализаций случайного процесса и оцениваются средние характеристики, то есть набор однородных реализаций.

Статическое моделирование описывает поведение объекта в данный момент времени.

Динамическое моделирование отображает поведение объекта во времени.

Дискретное моделирование отображает дискретные процессы, непрерывное моделирование - непрерывные процессы, дискретно-непрерывное моделирование - оба процесса.

В зависимости от формы представления объекта (системы S) выделяют: вымышленные и реальные.

Вымышленное (абстрактное) моделирование - когда невозможно или дорогое материальное создание (модели микромира). Делится на:

v наглядное;

v символическое;

v материальное.

Наглядное моделирование - на базе представления человека об объекте создаются гипотетические модели, аналоги и макеты. Гипотетическое моделирование - выбирается гипотеза о реальном объекте, гипотеза, которая отображает уровень знаний об объекте, когда знаний не хватает для формализации. Аналоговое моделирование использует аналогии разных уровней (полная, неполная, приблизительная). Макетирование - в основе выполненного макета лежит аналогия причинно-наследственных связей.

Символическое моделирование - искусственный процесс создания логического объекта-заместителя реального с помощью системы знаков и символов. Знаковое моделирование - вводятся знаки, условные обозначения отдельных понятий, составляются из знаков слова и предложения; операции объединения, пересечения и дополнения теории множеств дают описание объекта.

Языковое моделирование - в основе лежит словарь однозначных понятий.

Математическое моделирование - замена реального объекта математическим. Делится на аналитическое, имитационное и комбинированное.

Аналитическое моделирование - процессы функционирования элементов системы записываются в виде некоторых функциональных соотношений (алгебраических, интегро-дифференциальных, конечно-разностных и т.п.) или логических условий. Аналитическая модель может быть исследована следующими методами:

v аналитическими, когда хотят получить в общем виде явные зависимости для искомых характеристик;

v численным, когда, не умея решить уравнение в общем виде, получают числовые результаты при конкретных исходных данных;

v качественный, когда не умея решить уравнение, находят некоторые свойства решений (например, стойкость и др.).

Аналитический метод связывает явной зависимостью исходные данные с искомыми результатами. Это возможно для сравнительно простых систем.

Численные методы позволяют исследовать более широкий класс систем. Они эффективны при использовании ЭВМ. Для построения аналитических моделей существует мощный математический аппарат - алгебра, функциональный анализ, разностные уравнения, теория вероятности, математическая статистика, теория массового обслуживания и т.д.

Имитационное моделирование используется, когда для описания СС недостаточно аналитического моделирования. В имитационной модели поведение компонент сложной системы (СС) описывается набором алгоритмов, которые затем реализуют ситуации, которые возникают в реальной системе. Алгоритмы, которые модулируют по исходным данным (сходное состояние СС) и фактическим значением параметров СС позволяют отобразить явления в S и получить информацию о возможном поведении СС. На основе этой информации исследователь может принять соответствующее решение. Имитационная модель (ИМ) СС рекомендуется в следующих случаях:

1) нет законченной постановки задачи исследования и идет процесс познания объекта моделирования. ИМ - способ изучения явления.

2) математические средства аналитического моделирования сложные и громоздкие и ИМ дает наиболее простой способ.

3) кроме оценки влияния параметров СС необходимо наблюдать поведение компонент СС некоторый период.

4) ИМ - единственный способ исследования СС, то есть невозможны наблюдения в реальных условиях за объектом.

5) необходимо контролировать протекание процессов в СС, уменьшая и ускоряя скорость их протекания в ходе имитации.

6) при подготовке специалистов и освоении новой техники.

7) изучение новых ситуаций в СС, проверка новых стратегий и принятие решений перед проведением экспериментов на реальной S.

8) предвиденье узких мест и трудностей в поведении СС при введении новых компонент.

ИМ - наиболее распространенный метод анализа и синтеза СС.

Натурное моделирование - исследование на реальном объекте и обработке результатов экспериментов на основе теории подобия. Научный эксперимент, комплексные исследования, производственный эксперимент (исследуется широкая автоматизация, вмешательство в управление реальным процессом, создание критических ситуаций).

Физическое моделирование - на установках, которые сохраняют природу явлений при физическом подобии.

Кибернетическое моделирование - нет непосредственно физического подобия. Отображается S как "черный ящик" рядом входов и выходов.

Из всего вышесказанного и условий задания можно определить следующий вид модели:

v В зависимости изучаемых процессов: стохастическая - неизвестно сколько будет находиться деталей в накопителе при повторной обработке (известно, что если больше 3-х - активизируется второй станок); динамическое - необходимо узнать как система будет функционировать не в конкретный момент времени а на всем промежутки обработки 500-а деталей; непрерывное - из задания следует, что рассматривается автоматизированный конвейер.

v В зависимости от формы представления: вымышленное (абстрактное) - слишком дорого для студента материальное создание; к данной моделе применимы почти все варианты абстрактного моделирования (математическое, символьное т.д.) так, что нет смысла перечислять все.

Выбор математической схемы

Математическая схема - это участок при переходе от содержательного к формальному описанию процесса функционирования системы с учетом действия внешней среды.

То есть имеет место связка: "описательная модель - математическая схема - математическая (аналитическая и (или) имитационная) модель".

Каждая конкретная система S характеризуется набором свойств, то есть величин, отображающих поведение моделируемого объекта (реальной S) и учитывающих условия ее функционирования во взаимодействии с внешней средой (системой) Е.

При построении ММ системы решаются вопросы о полноте и упрощении. Полнота модели реализуется выбором границы " система S - среда Е ". Упрощение модели - выделение основных свойств S и отбрасывание второстепенных свойств (зависит от цели моделирования).

МАТЕМАТИЧЕСКИЕ СХЕМЫ ОБЩЕГО ВИДА

Модель S можно представить множеством величин, описывающих процесс функционирования реальной системы S.

Эти величины создают в общем случае четыре подмножества:

1) совокупность входных влияний на систему;;

2) совокупность влияний внешней среды;

3) совокупность внутренних параметров системы

4) совокупность выходных характеристик системы.

В этих подмножествах выделяются управляемые и неуправляемые переменные.

При моделировании S входные влияния, влияние внешней среды Е и внутренние параметры системы являются независимыми (экзогенными) переменными в векторной форме:

Выходные характеристики системы - зависимые (эндогенные) переменные.

Процесс функционирования описывается оператором Fs, который пре-

образовывает экзогенные переменные в эндогенные:

Совокупность зависимых выходных характеристик системы от времени (1) называется выходной траекторией (t), (2): называется законом функционирования системы S и обозначается Fs.

В общем случае закон функционирования системы Fs может быть задан в виде функции, функционала, логических условий, алгоритма, таблицы, словесного правила соответствия.

Таким образом, математическая модель объекта (реальной системы) - это конечное подмножество переменных вместе с математическими связями между ними и характеристиками.

ТИПОВЫЕ МАТЕМАТИЧЕСКИЕ СХЕМЫ

В практике моделирования объектов в области системотехники и системного анализа рациональней использовать типовые математические схемы:

v дифференциальные уравнения

v конечные автоматы

v вероятностные автоматы

v СМО (системы массового обслуживания).

ММ на основе этих схем:

1) детерминированные модели, когда при исследовании случайные факторы не учитываются, и системы функционируют в непрерывном времени, основанные на использовании дифференциальных, интегральных, интегро-дифференциальных и других уравнений.

2) детерминированные модели, которые функционируют в дискретном времени - конечные автоматы и конечно-разностные схемы.

3) стохастические модели (при учете случайных факторов) в дискретном времени - вероятностные автоматы.

4) стохастические модели в непрерывном времени - СМО.

Для больших информационно-управляющих систем (Ех, АСУ) типовые схемы недостаточны. Поэтому используют:

5) агрегативные модели (А-системы), которые описывают широкий круг объектов исследования с отображением системного характера этих объектов. При агрегативном описании сложная система разделяется на конечное число частей (подсистем), сохраняя при этом связи между взаимодействующими частями.

Итак, 5 подходов при построении ММ сложных систем:

1) непрерывно-детерминированный (D-схемы);

2) дискретно-детерминированный (R- схемы);

3) дискретно-стохастический (P- схемы);

4) непрерывно-стохастический (Q- схемы);

5) обобщенный или универсальный (А-схемы).

На основе сделанного выбора вида модели (непрерывно-стохастической) необходимо выбрать схему модели, исходя из определения схем (не вижу смысла описывать все схемы, а выбранная схема будет описана в следующей главе) для моей модели подходит Q-схема.

Аннотация

Данная курсовая работа должна показать уровень усвоения материала в области системного анализа и навыки при создании моделей систем.

Следует сразу заметить, что в этой курсовой работе не будет рассматриваться моделирование простых систем, т.к. их разработка довольно проста, а основные принципы одинаковы как для сложных систем, так и для простых. Так же не будут рассматривать начальные и основные понятия системного анализа, т.к. постановка задание подразумевает уклон на непосредственно моделирование системы, а не на разъяснения что такое система.

План

    Экономико-математическое моделирование, как метод научного познания

    Этапы экономико-математического моделирования

    Сущность экономико-математического моделирования

    Проблемы экономико-математического моделирования

Введение

Одним из видов формализованного знакового моделирования является математического моделирование, осуществляемое средствами языка математики и логики. Для изучения какого-либо класса явлений внешнего мира строится его математическая модель, т.е. приближенное описание этого класса явлений, выраженное с помощью математической символики.

Сам процесс математического моделирования можно подразделить на четыре основных этапа:

I этап: Формулирование законов, связывающих основные объекты модели, т.е. запись в виде математических терминов сформулированных качественных представлений о связях между объектами модели.

II этап: Исследование математических задач, к которым приводят математические модели. Основной вопрос - решение прямой задачи, т.е. получение в результате анализа модели выходных данных (теоретических следствий) для дальнейшего их сопоставления с результатами наблюдений изучаемых явлений.

III этап: Корректировка принятой гипотетической модели согласно критерию практики, т.е. выяснение вопроса о том, согласуются ли результаты наблюдений с теоретическими следствиями модели в пределах точности наблюдений. Если модель была вполне определена - все параметры ее были даны, - то определение уклонений теоретических следствий от наблюдений дает решения прямой задачи с последующей оценкой уклонений. Если уклонения выходят за пределы точности наблюдений, то модель не может быть принята. Часто при построении модели некоторые ее характеристики остаются не определенными. Применение критерия практики к оценке математической модели позволяет делать вывод о правильности положений, лежащих в основе подлежащей изучению (гипотетической) модели.

IV этап: Последующий анализ модели в связи с накоплением данных об изученных явлениях и модернизация модели. С появлением ЭВМ метод математического моделирования занял ведущее место среди других методов исследования. Особенно важную роль этот метод играет в современной экономической науке.

    Экономико-математическое моделирование, как метод научного познания

Моделирование в научных исследованиях стало применяться в глубокой древности, постепенно захватывая всё новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принёс методу моделирования - ХХ век. Однако методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.

Термин модель широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений. Рассмотрим только такие модели, которые являются инструментами получения знаний.

Необходимость использования метода моделирования определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств.

Метод моделирования включает три элемента:

1. субъект (исследователь);

2. объект исследования;

3. модель, опосредствующую отношения познающего субъекта и познаваемого объекта.

2. Этапы экономико-математического моделирования

Пусть имеется или необходимо создать некоторый объект А Мы конструируем (материально или мысленно) или находим в реальном мире другой объект В- модель объекта А. Рассмотрим основные этапы моделирования.

Этап построения модели предполагает наличие некоторых знаний об объекте- оригинале. Познавательные возможности модели обусловливаются тем, что модель отражает какие- либо существенные черты объекта – оригинала. Вопрос о необходимой и достаточной мере сходства оригинала и модели требует конкретного анализа. Очевидно, модель утрачивает свой смысл как в случае тождества с оригиналом (тогда он перестаёт быть оригиналом), так и в случае чрезмерного во всех существенных отношениях отличия от оригинала.

Таким образом, изучение одних сторон моделируемого объекта осуществляется ценой отказа от отражения других сторон. Поэтому любая модель замещает оригинал лишь в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько “специализированных” моделей концентрирующих внимание на определённых сторонах исследуемого объекта или же характеризующих объект с разной степенью детализации.

На втором этапе процесса моделирования модель выступает как самостоятельный объект исследования. Одной из форм такого исследования является проведение «модельных» экспериментов, при которых сознательно изменяются условия функционирования модели и систематизируются данные об ее «поведении». Конечным результатом этого этапа является множество знаний о модели R.

На третьем этапе осуществляется перенос знаний с модели на оригинал формирование множества знаний S об объекте. Этот процесс переноса знаний проводится по определённым правилам. Знания о модели должны быть скорректированы с учётом тех свойств объекта - оригинала, которые не нашли отражения или были изменены при построении модели. Мы можем с достаточным основанием переносить какой-либо результат с модели на оригинал, если этот результат необходимо связан с признаками сходства оригинала и модели. Если же определённый результат модельного - исследования связан с отличием модели от оригинала, то этот результат переносить неправомерно.

Четвёртый этап - практическая проверка полученных с помощью моделей знаний и их использование для построения обобщающей теории объекта, его преобразования или управления им.

    Сущность экономико-математического моделирования

Моделирование - циклический процесс. Это означает, что за первым четырёхэтапным циклом может последовать второй, третий и т. д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленною малым знанием объекта и ошибками в построении модели, можно исправить в последующих циклах. В методологии моделирования, таким образом, заложены большие возможности саморазвития.

Проникновение математики в Экономическую науку связано с преодолением значительных трудностей, лежащих в природе экономических процессов и специфике экономической науки.

Большинство объектов, изучаемых экономической наукой, может быть охарактеризовано кибернетическим понятием – «сложная система».

Наиболее распространено понимание системы как совокупности элементов, находящихся во взаимодействии и образующих некоторую целостность, единство. Важным качеством любой системы является эмерджентность - наличие таких свойств, которые не присущи ни одному из элементов, входящих в систему. Поэтому при изучении систем недостаточно пользоваться методом их расчленения на элементы с последующим изучением этих элементов в отдельности. Одна из трудностей экономических исследований - в том, что почти не существует экономических объектов, которые можно было бы рассматривать как отдельные (внесистемные) элементы.

Сложность системы определяется количеством входящих в неё элементов, связями между этими элементами, а также взаимоотношениями между системой и средой. Экономика страны обладает всеми признаками очень сложной системы. Она объединяет огромное число элементов, отличается многообразием внутренних связей и связей с другими системами (природная среда, экономика других стран и т. д.). В управлении экономикой взаимодействуют природные, технологические, социальные процессы, объективные и субъективные факторы.

Сложность экономики иногда рассматривалась как обоснование невозможности её моделирования, изучения средствами математики. Но такая точка зрения в принципе неверна. Моделировать можно объект любой природы и. любой сложности, И как раз сложные объекты представляют наибольший интерес для моделирования; именно здесь моделирование может дать результаты, которые нельзя получить другими способами исследования.

Потенциальная возможность математического моделирования любых экономических объектов и процессов не означает, разумеется, её успешной осуществимости при данном уровне экономических и математических знаний, имеющейся конкретной информации и вычислительной технике. И, хотя нельзя указать абсолютные границы математической формализуемости экономических проблем, всегда будут существовать неформализованные ещё проблемы, для которых математическое моделирование недостаточно эффективно.

С экономической точки зрения оптимальные решения, полученные с помощью экономическо-математического моделирования, обладают следующими основными свойствами:

1. Оптимальность решения зависит от целей, поставленных при планировании процесса. Например, выбор типа транспорта по критерию стоимости перевозки будет отличаться от выбора по критерию скорости.

2. Оптимальность решения зависит от текущей хозяйственной обстановки (иными словами, оптимум всегда конкретен, его нельзя вычислять абстрактно).

3. Существенные изменения оптимального варианта происходят только при значительных изменениях обстановки - это свойство называется устойчивостью базиса оптимального плана относительно малых изменений условий (т.е. оптимальные решения можно находить достаточно надёжно, несмотря на приблизительный характер почти всей экономической информации).

4. При определении взаимозависимости решений по всем объектам экономики особое значение имеют обратная связь объектов и издержки обратной связи. Например, если предприятия А и Б потребляют один и тот же ограниченный ресурс, то увеличение доли предприятия А уменьшает долю предприятия Б (обратная связь).

Возможно, потребление данного ресурса (сырья, топлива высшего сорта) снижает производственные издержки. Тогда, увеличение доли предприятия А приведёт к экономии на этом предприятии и к дополнительным издержкам на предприятии Б в результате замены ресурса менее эффективным (издержки обратной связи).

5. Оценка рациональности конкретного мероприятия зависит от уровня управления: решение, оптимальное для отдельного предприятия, может быть неоптимальным для отрасли или экономики в целом.

4. Проблемы экономико-математического моделирования

Объектом для экономико-математического моделирования является полностью структурированные проблемы. Частично или слабо структурированные проблемы, определяются во втором блоке, является объектами для методов системного анализа, сочетающих неформализованные решения специалистов с модельными расчётами по отдельным предметам.

Неструктурированные проблемы является объектами для экспертных решений, принимаемых на основе опыта и интуиции специалистов

Уже длительное время главным тормозом практического применения математического моделирования в экономике является сложность наполнения разработанных моделей конкретной и качественной информацией. Точность и полнота первичной информации, реальные возможности её сбора и обработки во многом определяют выбор типов прикладных моделей. С другой стороны, исследования по моделированию экономики выдвигают новые требования к системе информации.

В зависимости от моделируемых объектов и назначения моделей используемая в них исходная информация имеет существенно различный характер и происхождение. Она может быть разделена на две категории: о прошлом развитии и современном состоянии объектов (экономические наблюдения и их обработка) и о будущем развитии объектов, включающую данные об ожидаемых изменениях их внутренних параметров и внешних условий (прогнозы). Вторая категория информации является результатом самостоятельных исследований, которые так же могут выполняться посредством моделирования.

Методы экономических наблюдений и использование результатов этих наблюдений разрабатываются эконометрикой. Поэтому стоит отметить только специфические проблемы экономических наблюдений, связанные с моделированием экономических процессов.

В экономике многие процессы являются массовыми, они характеризуются закономерностями, которые не обнаруживаются на основании лишь одного или нескольких наблюдений. Поэтому моделирование в экономике должно опираться на массовые наблюдения.

Другая проблема порождается динамичностью экономических процессов, изменчивостью их параметров и структурных отношений. Вследствие этого экономические процессы приходится постоянно держать под наблюдением, необходимо иметь устойчивый поток новых данных. Поскольку наблюдения за процессами и обработка эмпирических данных обычно занимают довольно много времени, то при построении математических моделей экономики требуется корректировать исходную информацию с учётом её запаздывания.

Познание количественных отношений экономических процессов и явлений опирается на экономические измерения. Точность измерений в значительной степени предопределяет и точность конечных результатов количественного анализа посредством моделирования. Поэтому необходимым условием эффективного использования математического моделирования является совершенствование экономических измерителей. Применение математического моделирования заострило проблему измерений и количественных различных аспектов и явлений социально-экономического развития, достоверности и полноты получаемых данных, их защиты от намеренных и технических искажений.

В процессе моделирования возникает взаимодействие «первичных» и «вторичных» экономических измерителей. Любая модель в экономике опирается на определённую систему экономических измерителей (продукции, ресурсов элементов и т.д.). В то же время одним из важных результатов экономико-математического моделирования является получение новых (вторичных) экономических измерителей - экономически обоснованных цен на продукцию различных отраслей, оценок эффективности разнокачественных природой ресурсов, измерителей общественной полезности продукции. Однако, эти вторичные измерители могут испытывать влияние недостаточно обоснованных первичных измерителей, что вынуждает разрабатывать особую методику корректировки первичных измерителей для экономических моделей.

С точки зрения «интересов» моделирования экономики в настоящее время наиболее актуальными проблемами совершенствования экономических измерителей являются: оценка результатов интеллектуальной деятельности (особенно в сферё научно- технических разработок, индустрии информатики), построение обобщающих показателей экономического развития, измерение эффектов обратных связей (влияние экономических и социальных механизмов на эффективность производства).

Для методологии планирования экономики важное значение имеет понятие неопределённости экономического развития. В исследованиях по экономическому прогнозированию и планированию различают два типа неопределённости: «истинную», обусловленную свойствами экономических процессов, «информационную», связанную с неполнотой и неточностью имеющейся информации об этих процессах. Истинную неопределённость нельзя смешивать с объективным существованием различных вариантов экономического развития и возможностью сознательного выбора среди них эффективных вариантов. Речь идёт о принципиальной невозможности точного выбора единственного (оптимального) варианта.

В развитии экономики неопределённость вызывается тем, что ход планируемых и управляемых процессов, а также внешние воздействия на эти процессы не могут быть точно предсказаны из-за действия случайных факторов и ограниченности человеческого познания в каждый момент. Особенно характерно это для прогнозирования научно- технического прогресса, потребностей общества, экономического поведения. Неполнота и неточность информации об объективных процессах и экономическом поведении усиливают истинную неопределённость.

На первых этапах исследований по моделированию экономики применились в основном модели детерминистского типа. В этих моделях все параметры предполагаются точно известными. Однако, детерминистские модели неправильно понимать в механическом духе и отождествлять их с моделями, которые лишены всех “степеней выбора” (возможностей выбора) и имеют единственное допустимое решение. Классическим представителем жёстко детерминистских моделей являлась оптимизационная модель народного хозяйства, которая применялась для определения наилучшего варианта экономического развития среди множества допустимых вариантов.

В результате накопления опыта использования жестко детерминистских моделей были созданы реальные возможности успешного применения более совершенной методологии моделирования экономических процессов, учитывающих стохастику и неопределённость. Здесь можно выделить такие основные направления исследований как: усовершенствование методики моделей жестко детерминистского типа, проведение многовариантных расчётов и модельных экспериментов с вариацией конструкции модели и её исходных данных, изучение устойчивости и надежности получаемых решений, выделение зоны неопределённости, включение в модель резервов, применение приёмов, повышающих приспособляемость экономических решений вероятным и непредвиденным ситуациям, а также распространение моделей, непосредственно отражающих сложность и неопределённость экономических процессов и соответствующий математический аппарат: теорию вероятностей и математическую статистику, теорию игр и статистических решений, теорию массового обслуживания, стохастическое программирование, теорию случайных процессов.

Выводы

Модель - это материальный или мысленно представляемый объект, который в процессе исследования замещает объект - оригинал, так, что его непосредственное изучение даёт новые знания об объекте - оригинале.

Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.

Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов - заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания.

Для понимания сущности моделирования важно не упускать из виду, что моделирование - не единственный источник званий об объекте. Процесс моделирования «погружён» в более общий процесс познания. Это обстоятельство учитывается не только на этапе построения модели, но и на завершающей стадии, когда происходит объединение и обобщение результатов исследования, получаемых на основе многообразных средств познания.

Моделирование - циклический процесс. Это означает, что за первым четырёхэтапным циклом может последовать второй, третий и т. д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленною малым знанием объекта и ошибками в построении модели, можно исправить в последующих циклах.

Литература

1) Егорова Н.Е., Смулов А.М. Предприятия и банки: Взаимодействие, экономический анализ, моделирование: Учебно-практическое пособие. М.: 2002 г.

2) Кивачук В.С. Оздоровление предприятия: экономический анализ. Издательства: Издательство деловой и учебной литературы, «Амалфея». М.: 2002 г.

3) Монахов А.В. Математические методы анализа экономики. СПб.: Издательство «Питер», серия «Краткий курс», 2002 г.

4) Пинегина М.В. Математические методы и модели в экономике. М.: Издательство «Экзамен», 2002 г.

5) Пястолов С.М. Экономический анализ деятельности предприятий: Учебное пособие для вузов Серия: «Gaudeamus». М.: 2002 г.

6) Шикин Е.В., Чхартишвили А.Г. Математические методы и модели в управлении. М.: Издательство «Дело», серия «Наука управления», 2000 г.

Статьи по теме: