Неразъемные соединения деталей машин. Соединения разъемные и неразъемные Неразъемные соединения материалов различного типа

Соединение деталей - конструктивное обеспечение их контакта с целью кинематического и силового взаимодействия либо для образования из них частей (деталей, сборочных единиц) механизмов, машин и приборов. Нормальная работа машины возможна только в том случае, когда детали, её составляющие, связаны между собой и взаимодействуют заданным образом. При этом часть таких деталей имеют относительную взаимную подвижность, эта подвижность обусловлена, как правило, кинематической схемой узлов и механизмов. Другие детали соединены так, что сохраняют в процессе работы машины постоянное и неизменное положение относительно друг друга. Неподвижные связи между деталями обусловлены необходимостью расчленения машины для удобства изготовления, сборки, транспортировки, ремонта и т.п. Неподвижные связи между элементами машин называют соединениями .

Соединения являются важными элементами всех машин и механизмов. Во многих случаях именно выход из строя соединений является причиной аварий при работе машин. В арсенале конструктора имеется значительное количество различных видов соединений, которые могут быть классифицированы по разным признакам.

Классификация соединений:

1. По возможности разборки без разрушения соединяемых деталей - разъёмные и неразъёмные соединения;

2. По возможности относительного взаимного перемещения соединяемых деталей - подвижные и неподвижные соединения;

3. По форме сопрягаемых (контактных) поверхностей - плоское, цилиндрическое, коническое, сферическое, винтовое, профильное соединения;

4. По технологическому методу образования - сварное, паяное, клеёное (клеевое), клёпаное, прессовое, резьбовое, шпоночное, шлицевое, штифтовое, клиновое, профильное соединения.

Первыми в настоящей лекции представлены неразъёмные соединения - такие соединения, которые после изготовления невозможно разобрать без разрушения деталей, участвующих в соединении.

Из всех известных видов неразъёмных соединений наиболее широко распространены заклёпочные , сварные, паяные и клеевые соединения.

Заклёпочные соединения

Заклёпочным (клёпаным) называют неразъёмное неподвижное соединение, образованное с применением специальных закладных деталей заклёпок , выполненных из высокопластичного материала . Таким образом, заклёпочное соединение (Рис. 12.1) включает, по меньшей мере, 3 элемента (рис. 12.1, а): две соединяемых детали 1 и 2 и заклёпку 3, которая помещена в соосные отверстия, выполненные в соединяемых деталях. После сформирования соединения заклёпка, удерживающая во взаимном контакте соединяемые детали, имеет следующие 3 части (рис. 12.1, б): тело заклёпки или стержень 4 и две головки - закладную 5, изготавливаемую до формирования соединения, и замыкающую 6, создаваемую в момент образования заклёпочного соединения. Ряд заклёпок, соединяющих кромки двух или нескольких деталей, принято называть заклёпочным швом .


До появления современных видов сварки заклёпочные соединения были распространены особенно широко, однако и в настоящее время этот вид соединения достаточно активно используется в некоторых областях техники, например, в авиации, водном транспорте, приборостроении. Они применяются для соединения листовых, профильных (уголок, швеллер, двутавр и т.п.) и штампованных деталей, работающих в условиях переменных, вибра-ционных и ударных нагрузок. Особенно широко употребляются заклёпки для соединения разнородных или нагортованных (подвергнутых холодной деформации) материалов (сталь - алюминиевые сплавы; холоднокатаный лист; соединение металла с неметаллом).

Достоинства заклёпочных соединений:

1. Простота конструкции и технологического исполнения;

2. Возможность соединения разнородных и нагортованных материалов;

3. Пригодность для неразрушающего контроля;

4. Высокая стабильность;

5. Высокая стойкость при действии ударных и вибрационных нагрузок.

Недостатки заклёпочных соединений:

1. Высокий расход металла на образование соединения;

2. Высокая трудоёмкость, а значит, и стоимость соединения;

3. Ослабление прочности соединяемых деталей отверстиями под заклёпки;

4. Нарушение плотности швов в процессе эксплуатациии.

Большое разнообразие областей применения заклёпочных соединений порождает и большое число их разновидностей.

Классификация заклёпочных соединений:

1) по функциональному назначению - прочные , предназначенные только для передачи нагрузки; плотные , обеспечивающие герметичное разделение сред, и прочно-плотные , способные выполнять обе названные функции;

2) по конструктивным признакам шва - нахлёсточное соединение (рис. 12.2, а); стыковое соединение, которое в свою очередь может быть выполнено с одной (рис. 12.2, б) либо с двумя (рис. 12.2, в) накладками ;

3) по числу поверхностей среза, приходящихся на одну заклёпку под действием рабочей нагрузки - односрезные ; двухсрезные ; и т.д.; многосрезные ;

4) по количеству заклёпочных рядов в шве - однорядные ; двухрядные ; и т.д.; многорядные .

Разнообразие заклёпочных соединений порождает соответственно большое число разновидностей самих заклёпок. По форме закладных головок заклёпки бывают: с полукруглой (полусферической, рис. 12.3, а), потайной , (рис. 12.3, б), полупотайной (рис. 12.3, в), цилиндрической (рис. 12.3, г) и др. головками. А по форме стержня (тела) заклёпки могут быть сплошными (полнотельными , рис. 12.3, а-в); пустотелыми (со сквозным центральным отверстием, рис. 12.3, д); полупустотелыми (часть стержня сплошная, а часть пустотелая - с отверстием, рис. 12.3, г). Большая часть типоразмеров заклёпок стандартизована. Обозначение заклёпки в конструкторской документации обычно включает номер стандарта, диаметр стержня и длину тела заклёпки, выбираемую из ряда нормальных линейных размеров с учётом запаса длины на формирование замыкающей головки.

Подбор заклёпок для заклёпочного соединения при равной толщине склёпываемых листов и одинаковой их прочности и заклёпок выполняется в зависимости от толщины листов s (рис. 12.4), а для соединения листов разной толщины диаметр заклёпки устанавливают в соответствии с суммарной толщиной всего пакета S .

При соединении листов равной толщины (все размеры в мм) диаметр заклёпки

; (12.1)

шаг установки заклёпок в ряду

расстояние оси заклёпки от края листа

. (12.3)

Для соединения листов разной толщины диаметр заклёпки

; (12.4)

остальные размеры можно назначать в соответствии с зависимостями (12.2) и (12.3).

Для швов с накладками толщина накладок составляет при одной накладке ; для двухнакладочного шва толщина каждой из накладок .

Заклёпки изготавливают из малоуглеродистых и легированных сталей, меди и медных сплавов (чаще это латуни), алюминия и алюминиевых сплавов.

Материал заклёпок должен удовлетворять следующим требованиям:

Высокая пластичность и незакаливаемость при нагревании, облегчающие клёпку и способствующие равномерному нагружению заклёпок рабочими нагрузками;

Температурный коэффициент расширения, мало отличающийся от такового для материала склёпываемых деталей;

Не образовывать гальваническую пару с материалом склёпываемых деталей.

Критерием работоспособности большинства заклёпочных соединений является их прочность. При недостаточной прочности соединения возможно его разрушение четырёх различных видов (рис. 12.5):

1. Под действием касательных напряжений в теле заклёпки возможен её срез по сечению, лежащему в плоскости контакта склёпываемых листов;

2. Под действием контактных напряжений, действующих между телом заклёпки и поверхностью отверстий под её установку, возможно смятие контактирующих (цилиндрических) поверхностей;

3. Под действием нормальных напряжений в теле склёпываемых листов, действующих в сечении шва, ослабленном отверстиями под установку заклёпок (сечение 1-1, рис. 12.5), возможен разрыв листов по этому ослабленному сечению;

4. Под действием касательных напряжений в теле склёпываемых листов возможен вырыв (срез) части металла склёпываемых листов (часть листа, ограниченная сечениями 2-2, рис. 12.5).

Поэтому ответственные соединения требуют прочностного расчета по всем четырём видам напряжений. При этом допускаемые напряжения назначаются в зависимости от прочностных показателей материала заклёпок и склёпываемого металла, от качества подготовки соединения под клёпку (чистота и точность обработки отверстий, точность их совмещения, прилегание склёпываемых деталей и т.п.), от характера рабочей нагрузки (статическая, отнулевая, знакопеременная), а также от внешних условий, в которых дол-жно работать соединение (температура, агрессивность среды и др.).

Допускаемые напряжения для заклёпок из малоуглеродистой стали, работающих при статической нагрузке можно принять в соответствии с табл. 12.1. Для швов работающих при отнулевой (пульсирующей) нагрузке, допускаемое напряжение должно быть снижено на 10-20%, а для швов, нагруженных знакопеременной (циклической) нагрузкой - на 30-50%.

Сварные соединения

Сварные соединения нашли самое широкое применение в промышленности и, в частности, при производстве транспортной и военной техники. Без применения сварки в настоящее время не выпускается практически ни одна машина. Многие автомобили имеют сварные рамы, корпус заднего моста, диски колёс, кузова. В военной технике сварными изготавливаются бронекорпуса боевых машин (танки, БМП , БТР), башни, опорные плиты миномётов, орудийные лафеты и многое другое.

Сварные соединения - неразъёмные соединения, образованные посредством установления между деталями межатомных связей, при помощи расплавления соединяемых кромок, их пластического деформирования или совместным действием того и другого .

Широкому распространению сварных соединений способствовало наличие у них большого числа преимуществ перед клёпаными соединениями.

Достоинства сварных соединений:

1. Высокая технологичность сварки, обусловливающая низкую стоимость сварного соединения;

2. Снижение массы сварных деталей по сравнению с литыми и клёпаными на 25-30%;

3. Возможность получения сварного шва, равнопрочного основному металлу (при правильном конструировании и изготовлении);

4. Возможность получения деталей сложной формы из простых заготовок;

5. Возможность получения герметичных соединений;

6. Высокая ремонтопригодность сварных изделий.

Недостатки сварных соединений:

1. Коробление (самопроизвольная деформация) изделий в процессе сварки и при старении;

2. Возможность создания в процессе сварки сильных концентраторов напряжений;

3. Сложность контроля качества сварных соединений без их разрушения;

4. Сложность обеспечения высокой надежности при действии ударных и циклических, в том числе и вибрационных, нагрузок.

По способу образования сварного шва сварные соединения можно разделить на образованные с расплавлением соединяемых кромок (сварка плавлением) и без расплавления кромок соединяемых деталей. Из наиболее распространённых способов к сварке плавлением относятся соединения, выполненные электродуговой сваркой с различными её модификациями (ручная дуговая плавящимся и неплавящимся электродом, сварка под слоем флюса, сварка в среде защитных газов и пр.), газовой сваркой (при нагреве свариваемых кромок теплом газового пламени), электрошлаковой сваркой, сваркой лазерным лучом, электронным пучком и некоторые другие виды сварных соединений.

В группу соединений без расплавления кромок входят соединения, выполненные кузнечной сваркой, всеми видами контактной сварки (стыковой, точечной, шовной), сваркой посредством пластического холодного деформирования, сваркой взрывом, диффузионной сваркой в вакууме, сваркой трением и другие виды соединений.

Но, пожалуй, самое широкое применение в промышленности, строительстве и других областях производства нашла электродуговая сварка плавлением с применением неплавящихся (уголь, вольфрам) и плавящихся электродов. Электродуговая сварка неплавящимся электродом изобретена в конце XIX века (сварка угольным электродом предложена в 1882 г., патент в 1885 г.) Николаем Николаевичем Бенардосом (1842-1905), а в 1888 Николай Гаврилович Славянов (1854-1897) усовершенствовал этот метод, применив металлический плавящийся электрод.

В настоящее время основная масса сварных соединений, выполненных электродуговой сваркой стандартизованы. По взаимному расположению частей сварного соединения последние можно разделить на 5 основных типов: стыковое (рис. 12.6, а), угловое (рис.12.6, б), тавровое (рис. 12.6, в), нахлёсточное (рис. 12.6, г) и торцовое (рис. 12.6, д).

Металл, затвердевший после расплавления и соединяющий сваренные детали соединения, называют сварочным швом . Формирование сварочного шва сопровождается частичным оплавлением поверхностей деталей, участвующих в образовании сварного соединения. Поверхности свариваемых деталей, подвергающиеся частичному оплавлению при формировании свар-чного шва и участвующие в образовании соединения, называются свариваемыми кромками .

По аналогии с заклёпочными швами сварные швы по функциональному назначению делят на прочные , от которых не требуется обеспечение герметичности, плотные , главное требование к которым герметичность, и прочноплотные , у которых требование прочности сочетается с требованием герметичности разделяемых пространств.

По форме поперечного сечения сварные швы делятся на стыковые (рис. 12.7, I) и угловые (рис. 12.7, II). Кроме того, поперечное сечение шва зависит от формы подготовки кромок под сварку. Так, например, в стыковых соединениях применяются швы с отбортовкой кромок, без скоса кромок (рис. 12.5, Iа), с V -образной разделкой кромок (рис. 12.7, Iб) с K -образной разделкой кромок (рис. 12.7, Iв) X -образной разделкой кромок (рис. 12.7, Iг). Швы с разделкой кромок применяются и в других видах соединений. Форма разделки кромок зависит от толщины свариваемого металла, от вида сварки (ручная или автоматическая), от способа защиты расплавленного металла от окисления (сварка под слоем флюса, сварка в среде защитных газов и т.п.) и некоторых других факторов. Для наиболее распространённых видов сварки (ручная плавящимся электродом, полуавтоматическая и автоматическая под слоем флюса и др.) разделка кромок стандартизована.

По форме наружной поверхности швы могут быть плоские (рис. 12.7, IIа), вогнутые (рис. 12.7, IIб), выпуклые (рис. 12.7, IIв). Иногда выпуклые швы необоснованно называют усиленными, а вогнутые - ослабленными. Однако усиление сварочного шва способствует концентрации напряжений в околошовной зоне металла, что отрицательно сказывается на работоспособности соединения при переменных нагрузках, а вогнутость уменьшает рабочее сечение шва, увеличивая тем самым напряжения в нём.

По расположению швов относительно действующей нагрузки сварные швы разделяют на: лобовые (рис. 12.8, а), продольная ось которых перпендикулярна действующим усилиям, фланговые (рис. 12.8, б) или боковые, продольная ось которых по направлению совпадает с направлением действующих усилий, и косые (рис. 12.8, в), продольная ось которых направлена под некоторым углом к направлению действующей нагрузки. Швы, участки которых имеют различное направление по отношению к действующим усилиям, называют комбинированными (рис. 12.8, г).

Для сварных конструкций наиболее существенным является различие швов по условиям работы. По этому признаку все швы можно разделить на рабочие , предназначенные для восприятия основных нагрузок, и соединительные или связующие, назначением которых является только скрепление отдельных элементов конструкции в единое целое.

Известны и некоторые другие признаки деления сварочных швов, не представленные в данной лекции.

Критерием работоспособности большинства сварных соединений можно считать прочность шва и околошовной зоны при действующих в соединении нагрузках, которые могут иметь самый различный характер.

При расчёте сварных соединений принимается ряд упрощений и допущений:

1. Нагрузку , приложенную к сварочному шву, считают равномерно распределённой по всей длине шва, в то время как измерения, выполненные на реальных швах, свидетельствуют о существенной неравномерности распределения нагрузки по длине шва, для большинства их типов.

2. При расчёте стыковых швов высоту шва принимают равной толщине свариваемого металла , независимо от наличия выпуклости (усиления) или вогнутости (ослабления или мениска).

3. При расчёте угловых швов (нахлёсточные и тавровые соединения) в качестве сечения шва принимается равнобедренный прямоугольный треугольник , вписанный в фактическое сечение шва (рис. 12.7.II, а-г), выпуклость шва и в этом случае не принимается во внимание.

4. При определении нагрузки парных фланговых швов, расположенных несимметрично относительно линии действия внешней нагрузки, величину нагрузки на каждый из швов считают обратно пропорциональной расстоянию от оси шва до линии действия внешней нагрузки .

Напряжения растяжения в стыковом шве вычисляют так же, как и для основного металла

; (12.5)

где F - усилие, воспринимаемое сварочным швом; l - длина шва; s - толщина меньшего из свариваемых листов; - допускаемые напряжения растяжения для металла шва ( - допускаемые напряжения для свариваемого металла).

Угловые швы обычно рассчитываются на срез по опасному (наименьшему) сечению (сечение I-I на рис. 12.7, IIа). В этом случае касательные напряжения

; (12.6)

где k - катет шва, - допускаемые касательные напряжения для металла шва. При определении допускаемых напряжений для металла шва (наплавленного металла) величины коэффициентов в скобках принимаются в зависимости от вида сварки и качества присадочного металла.

Прочностные характеристики сварочных швов при других видах сварки (электрошлаковая, различные разновидности контактной и др.) в данном курсе не рассматриваются, их можно найти в справочной литературе.

Паяные и клеевые соединения

Паяные соединения - это соединения, образованные за счет химического или физического (адгезия , растворение, образование эвтектик) взаимодействия расплавляемого материала - припоя с соединяемыми кромками деталей . Применение расплавляемого припоя обусловливает нагревание соединяемых деталей. Тем не менее, существенным отличием пайки является отсутствие оплавления соединяемых поверхностей.

Паяные соединения широко применяются в транспортном машиностроении (паяные радиаторы охлаждающих систем), в приборостроении и электронике (монтаж печатных плат и навесных элементов), а также в некоторых других отраслях производства. Некоторые типы паяных соединений представлены на рис. 12.9.

Достоинства паяных соединений:

1. Возможность соединения разнородных материалов;

2. Возможность соединения тонкостенных деталей;

3. Возможность получения соединения в труднодоступных местах;

4. Коррозионная стойкость;

5. Малая концентрация напряжений вследствие пластичности припоя;

6. Герметичность паяного шва.

Недостатки паяных соединений:

1. Пониженная прочность шва в сравнении с основным металлом;

2. Требования высокой точности обработки поверхностей, сборки и фиксации деталей под пайку.

В качестве припоев для пайки соединений чаще всего применяются различные металлы и некоторые сплавы, температура плавления которых существенно ниже, температуры плавления материала соединяемых деталей.

Все припои по температуре плавления можно весьма условно разде-лить на 3 группы: низкотемпературные (Т пл < 150-200 °С ) сплавы олова, свинца, висмута, кадмия, индия (Олово - Т пл = 232 °С ; свинец Т пл = 327 °С , эвтектика 61,9% Sn - 183,3 °С ; сплав Вуда = Bi - 50,0%, Pb-25,0%, Sn - 12,5%, Cd- 12,5%, T пл = 68°С ; Bi - 49,4%, Pb - 18,0%, Sn -11,6%, Zn 21,0% T пл = 58 °С ); среднетемпературные или мягкие (150-200 <Тпл ) сплавы олова, свинца, сурьмы, цинка; высокотемпературные или твердые (350-400 <Т пл ) медь, цинк, серебро и их сплавы, наиболее распространенными и дешевыми из которых являются латуни.

Маркировка и назначение некоторых припоев: ПОС-90 (олово 90%, остальное свинец, Т пл = 222 °С ) - пайка посуды; ПОС-30 (Т пл = 256 °С ) - третник - пайка радиоаппаратуры; ПМЦ-48, (медь 48%, остальное цинк, Т пл = 865 °С ) - пайка медных сплавов, имеющих температуру плавления не ниже 920°С; ПСр-72 (серебро 72%, остальное медь, Т пл = 779 °С ) - пайка чёрных и цветных металлов, имеющих температуру плавления не ниже 800°С; ПСр-40 (серебро 40%, медь ~ 16,7%, цинк ~ 17,0%, кадмий ~ 26,0%, никель ~ 0,3% Т пл = 605 °С ) - пайка чёрных и цветных металлов, имеющих температуру плавления не ниже 650°С.

Для защиты металла, удаления окисной пленки при пайке используются флюсы , которые бывают твердые , жидкие и газообразные . Наиболее известные из них: для мягких припоев - канифоль, нашатырь (хлористый аммоний), раствор хлористого цинка; для твердых припоев - бура (натрий борнокислый), борная кислота, хлористые и фтористые соли металлов.

Для обеспечения заполнения зазора в паяном соединении, он не должен быть слишком большим: обычно для легкоплавких припоев принимают зазор до 0,2-0,3 мм на сторону, для твердых припоев несколько меньше - до 0,15 мм. Но величина зазора зависит как от конструкции паяного соединения, так и от технологии пайки - для пайки в печи нужен один зазор, для пайки в соляной ванне - другой.

Клеевые соединения образуются посредством адгезионных сил, возникающих при затвердевании или полимеризации клеевого слоя, наносимого на соединяемые поверхности . Отличие клеевого соединения от паяного заключается в том, что клеи не являются металлами, в то время как припои - это либо металлы, либо их сплавы. В зависимости от состава и свойств клеев их полемирезация может происходить как при комнатной температуре, так и при нагревании.

Все клеи можно разделить на конструкционные - такие которые способны выдерживать после затвердевания нагрузку на отрыв и сдвиг, и неконструкционные - соединения с применением которых не способны длительное время выдерживать нагрузки.

К конструкционным можно отнести клеи БФ, эпоксидные, циакрин и др. К неконструкционным - клей 88Н, иногда резиновый и др.

Большинство клеев требует выдержки клеевого соединения под нагрузкой до образования схватывания и последующей досушки в свободном состоянии. Некоторые клеи требуют нагрева для выпаривания растворителя и последующей полимеризации. Клеевые соединения часто применяют в качестве контровочных для резьбовых соединений. Как правило, клеевые соединения лучше работают на сдвиг, чем на отрыв.

Расчет паянных и клеевых соединений ведется на сдвиг или на отрыв - в зависимости от их конструкции.

В заключение следует отметить, что перечень неподвижных соединений, используемых в промышленности, далеко не ограничивается представленными в настоящей лекции. Кроме того, техническая мысль не стоит на месте, а, следовательно, постоянно появляются новые методы соединения деталей, а значит, и новые виды соединений.

Кроме неподвижных соединений, которые не подлежат разборке, существует большой класс разъёмных соединений. Последние и будут рассмотрены в последующих лекциях.

Все виды соединений объединены в 2 основных группы: разъёмные и неразъёмные .
Разъёмные – это соединения, которые можно разобрать, не разрушая деталей или скрепляющих их элементов. Это болтовые, шпилечные, трубные, винтовые (резьбовые), шпоночные, штифтовые(нерезьбовые).
Неразъёмные – это соединения, которые нельзя разобрать, не разрушив деталей или скрепляющих их элементов. Это клёпанные, сварные, паяные, клееные, сшивные

Разъемные соединения. Болты, винты, гайки. Чтобы соединить болтами две заготовки, в них необходимо просверлить отверстия. Для этого следует взять сверло, диаметр которого немного больше диаметра болта. Например, для болта М10 сверлится отверстие 10,5 мм. Такой зазор (0,5 мм) позволит компенсировать возможные неточности в положении отверстий обеих соединяемых заготовок, особенно в случаях, когда точек соединения несколько, а заготовки большой длины. Обе заготовки надо соединить вместе и сверлить за один прием. Неподвижность соединения обеспечивают гайки, подкладные шайбы и пружинящие кольца - шайбы Гровера (рис. 1). Шайба, подложенная под головку болта, препятствует его вращению, а пружинящее кольцо, упираясь одним острым «зубом» в гайку, а другим - в заготовку, не дает гайке самопроизвольно раскручиваться. Если головка болта (винта) не должна выступать над поверхностью детали, применяются болты (винты) с потайной головкой. В этом случае отверстие под винт сверлят сначала через обе заготовки, а затем раззенковывают с помощью сверла или зенкера.
Шурупы (винты)-саморезы. При их использовании гайки не нужны. Такой шуруп сам себе нарезает резьбу в обеих заготовках и стягивает их. Шпильки. Шпильки представляют собой металлические стержни с резьбой на обоих концах. Применяются они в тех случаях, когда к толстой или массивной заготовке необходимо прикрепить другую деталь. В заготовке сверлят отверстие, нарезают в нем резьбу под шпильку. Глубина отверстия должна превышать длину нарезанной части шпильки. Иначе ее нельзя будет вывинтить.
Неразъемные соединения. Заклепки. Заклепки применяются для скрепления элементов изделий небольшой толщины, в основном из листовых материалов. Состоят они из стержня и закладной головки (рис. 2). Наиболее распространенными являются заклепки, представленные на рис. 3. Перед соединением деталей в них предварительно высверливают отверстия, затем вставляют заклепку и конец ее расклепывают для образования замыкающей головки. Материал заклепок должен быть однородным с материалом соединяемых деталей. Это нужно для того, чтобы не происходила электрохимическая коррозия и не возникали напряжения, вызванные разными коэффициентами температурного расширения. Соединения на заклепках с отрываемым стержнем. Недостаток описанных выше традиционных заклепок в том, что при расклепке требуется доступ к тыльной стороне. В этом нет необходимости при использовании заклепок с отрываемым стержнем, которые и удобны в обращении, и экономичны. Однако справедливости ради следует отметить, что соединения на них несколько менее прочны, а для работы с ними нужны специальные заклепочные клещи, оснащенные сменными направляющими элементами. Этот вид заклепок имеет, помимо упомянутой меньшей прочности, и другие недостатки: а) заклепки выступают с тыльной стороны; правда, внутри полых изделий выступов не видно; б) эти соединения негерметичны. Клеевые соединения. Склеивание - достаточно распространенный способ получения неразъемных соединений. Качество, т. е. долговечность клеевых соединений зависит от качества подготовки склеиваемых поверхностей и вида нагрузки на клеевой шов. Прежде всего поверхности должны быть очищены от ржавчины, жира и обработаны грубой шлифовальной шкуркой зернистостью 60 или 80. Не следует склеивать консольные детали при малой площади опоры, подвергающиеся воздействию разнородных нагрузок (скажем, сдвигу и повороту), поскольку в таких условиях клеевое соединение будет заведомо непрочным. То же можно сказать о склеивании деталей, работающих под нагрузкой, вызывающих их расслаивание. С другой стороны, соединения на клею будут прочными, если соединяемые детали в процессе эксплуатации будут подвергаться сдвигу относительно друг друга или растяжению. Клеи по металлу бывают одно- и многокомпонентными. Первые, в том числе и контактные клеи, обычно сохраняют свою эластичность длительное время и склонны к усадке. Их применяют чаще всего для соединения деталей с большой площадью склеиваемых поверхностей и испытывающих небольшие нагрузки. Очень хорошо клеят многокомпонентные клеи на синтетической основе: ГИПК-61, эпоксидные (ЭДП, ЭПО, ЭПЦ-1), а также БФ-2, Момент, Феникс, Super Glue.
Соединения металлических деталей пайкой. Пайка - это процесс получения неразъемного соединения металлических материалов и деталей из них расплавленным припоем. Припой - это металл или сплав, температура плавления которого гораздо меньше, чем у соединяемых изделий. В зависимости от температуры плавления различают следующие типы припоев: мягкие (легкоплавкие) - температура плавления не более 450 °С, твердые (среднеплавкие) - 450-600 °С; высокотемпературные (высокоплавкие) - свыше 600 °С. Для большинства работ, как правило, пользуются мягкими оловянно-свинцовыми припоями марки ПОС. Маркировка их означает следующее: цифра в марке припоя - содержание олова в процентах; так, в припое ПОС 90 - 90% олова, в ПОС 40 - 40%, и т.д.; следующие за обозначением марки (т. е. за буквами «ПОС») буквы означают добавку элемента, формирующего специальные свойства припоя: ПОССу4-6 - припой с добавкой сурьмы, ПОСК50 - кадмия, ПОСВ33 - висмута. Чтобы предохранить соединяемые поверхности (предварительно хорошо очищенные) от окисления, используют паяльный флюс - вещество, очищающее поверхности и припой от оксидов и загрязнений и предотвращающее образование оксидов, а также увеличивающее растекаемость расплавленного припоя. Каждый флюс эффективен только в определенном интервале температур, за пределами которого он сгорает. Припой выбирают в зависимости от свойств соединяемых металлов, припоя, требований прочности спаянного соединения и некоторых других условий. Сварка Сварка - это процесс получения неразъемного соединения деталей из твердых материалов и изделий из них путем расплавления краев соединяемых деталей под действием тепла. Источниками нагрева могут быть электрическая дуга, газовое пламя, расплавленный шлак, плазма, энергия лазерного луча. Существует множество методов сварки, из которых наиболее широкое распространение получила дуговая сварка, при которой расплавление краев соединяемых деталей осуществляется электрической дугой. Эта дуга представляет собой электрический разряд между двумя электродами или электродом и изделием. Температура плазмы дуги составляет 6-7 тысяч градусов, что дает возможность плавить практически все металлы. Энергия, необходимая для образования и поддержания дуги, поступает от источников питания постоянного и переменного тока. Традиционным источником переменного тока является сварочный трансформатор. Источником постоянного тока является выпрямитель, который сконструирован на базе трансформатора и полупроводникового выпрямителя. Широкое распространение получили также инверторные источники тока, которые применяются для сварки как на переменном, так и на постоянном токе. Электрическая дуга возникает между кончиком электрода и деталью за счет сильного электрического поля, создаваемого сварочным аппаратом: оно пробивает воздушный промежуток между электродом и деталью, и в результате возникает мощный электрический ток, при протекании через деталь выделяющий большое количество тепла. Сварочный электрод представляет собой металлический стержень, плавящийся при сварке и дающий тем самым дополнительный металл для сварного шва. Наиболее распространенными являются электроды рубилового типа, используемые при сварке с помощью и постоянного, и переменного тока. Электроды обычно бывают длиной - 30 или 35 см, толщиной 1,5: 2,25; 3,25; 4; 5 мм и более. Для сварки более толстых деталей применяют и более толстые электроды, и большие токи. Соединение двух или более деталей, полученное с помощью сварки, называется сварным.

По материалам сайта: http://www.electrostal.com.ua/

>>Черчение:Чертежи разъемных и неразъемных соединений деталей

Рассмотрим некоторые виды разъемных соединений, используемые в сборочных единицах, и познакомимся с их изображением на чертежах.

Резьбовые соединения и их на чертежах.

Соединение деталей, осуществляемое с помощью болта, гайки и шайбы.Чертеж болтового соединения принято вычерчивать упрощенно, так, как это показано на рис. 210.

Рассмотрим последовательность выполнения чертежа болтового соединения:
1. Вначале изображают соединяемые детали.
2. Изображают болт.
3. Изображают шайбу.
4. Изображают гайку.

В учебных целях принято вычерчивать болтовое соединение по относительным размерам. Относительные размеры элементов болтового соединения определены и соотнесены с наружным диаметром резьбы . Они приведены на рис. 210.

Рассмотрим пример определения относительных размеров для болтового соединения, осуществляемого болтом, имеющим размеры M10 (d=10 мм):

  • диаметр окружности, описанной вокруг шести¬угольника D=2d(2xl0=20 мм);
  • высота головки болта h=0,7d(0,7x10=7 мм);
  • длина резьбовой части lo=2d+6(2xl0+6=26);
  • высота гайки H=0,8d(0,8x10=8 мм);
  • диаметр отверстия под болт d=l,ld(1,1x10= 11 мм);
  • диаметр шайбы Dm=2,2d (2,2x10=22 мм);
  • высота шайбы S=0,15с1(0,15х10=1,5 мм).

Соединение деталей, осуществляемое с помощью винта, ввинчиваемого в одну из соединяемых деталей, либо винта, шайбы и гайки.

Рассмотрим последовательность (рис. 211) выполнения чертежа винтового соединения:
1. Вначале изображают соединяемые детали. Одна из них имеет резьбовое отверстие, в которое ввинчивается резьбовой конец винта. На разрезе резьбовое отверстие показывается частично закрытым резьбовым концом стержня винта. Другая соединяемая деталь показывается с зазором, существующим между цилиндрическим отверстием верхней соединяемой детали и винтом.
2. Затем изображают винт.

Шпилечное соединение - соединение деталей, осуществляемое с помощью шпильки, один конец которой вворачивается в одну из соединяемых деталей, а на другой надевается присоединяемая деталь, шайба и затягивается гайка.

Чертеж шпилечного соединения выполняют
1. Изображают деталь с резьбовым отверстием.
2. Изображают шпильку.
3. Вычерчивают изображение второй соединяемой детали.
4. Изображают шайбу.
5. Изображают гайку.

При выполнении чертежей болтового, винтового, шпилечного соединений используются следующие упрощения:

  • не изображают фаски на шестигранных и квадратных головках болтов, винтов и гаек, а также на его стержне;
  • допускается не показывать зазор между стержнем болта, винта, шпильки и отверстием в соединяемых деталях;
  • при построении чертежа болтового, винтового,шпилечного соединений на изображениях гайки и шайбы линии невидимого контура не проводят;
  • болты, гайки, винты, шпильки и шайбы на чертежах болтового, винтового и шпилечного соединений показывают нерассеченными, если секущая плоскость направлена вдоль их оси;
  • при вычерчивании гайки и головки болта, винта сторону шестиугольника берут равной наружному диаметру резьбы. Поэтому на главном изображении вертикальные линии, ограничивающие среднюю грань гайки и головки болта, совпадают с линиями, очерчивающими стержень болта.


Нерезьбовые разъемные соединения

Шпоночное соединение - соединение деталей, осуществляемое посредством шпонки, которая устанавливается в шпоночном пазу вала и входит в шпоночную канавку присоединяемой детали.

Этот вид соединения является наиболее распространенным среди разъемных нерезьбовых соединений. С помощью этого вида соединения осуществляется соединение вала с посаженной на него деталью (шкивом, зубчатым колесом, маховиком, втулкой и т.д.).

Шпоночные пазы (канавки) прорезают в соответствии с формой шпонки, посредством которой осуществляется соединение. Форма и размеры шпонок стандартизованы. По форме шпонки различаются на призматические (со скругленными и нескругленными торцами), сегментные и клиновые (рис. 213). Размеры шпонок, шпоночных канавок на валу и соединяемой детали выбирают в зависимости от диаметра вала, входящего в соединение (см. таблицу 14).

Сборочный чертеж шпоночного соединения (рис. 214, в), содержащий фронтальный разрез и сечение по А-А, выполняют в следующей последовательности:
1.Изображают вал, выявляя форму шпоночной канавки (рис. 214, а).
2.Изображают шпонку, помещенную в шпоночную канавку на двух изображениях (рис. 214, б).
3.Изображают втулку, показывая зазор (небольшой промежуток) между верхней плоскостью шпонки и дном канавки во втулке (рис. 214, в).

4. Наносят обозначение сечения.

Обратите внимание на то, что на фронтальном разрезе шпоночного соединения шпонка и вал показаны нерассеченными. Как вам известно, эта условность принята для непустотелых деталей, попадающих в секущую плоскость , которая проходит вдоль них.

Все рассмотренные виды соединений имеют так называемые сопрягаемые поверхности. К сопрягаемым поверхностям относятся поверхности , которые взаимодействуют с поверхностями других деталей. Например, в шпоночном соединении сопрягаемыми поверхностями будут являться боковые поверхности шпонки и шпоночных канавок вала и втулки. Это означает, что они должны быть согласованы по размерам, поскольку находятся во взаимодействии.

Штифтовое соединение - соединение деталей, осуществляемое посредством плотной посадки штифта в соединяемые детали.

Штифтовые соединения предназначены для точной фиксации взаимного положения деталей , а также в качестве крепежных деталей при действии небольших нагрузок (рис. 215).

Форма штифтов, с помощью которых осуществляется соединение, бывает цилиндрической и конической. Штифт запрессовывается в отверстия , одновременно просверленные в соединяемых деталях (рис. 215).

Изображение штифтового соединения (рис. 216) выполняется в следующей последовательности:
1. Строится фронтальный разрез, на котором изображаются соединяемые детали.

2. Показывается изображение штифта.

На сборочном чертеже штифтового соединения используются некоторые ранее изученные вами условности, применяемые при изображении других видов соединений .

Вопросы и задания
1. Приведите примеры разъемных соединений.
2. В каких случаях используют резьбовые соединения?
3. Какие условности используются при выполнении чертежей разъемных соединений?
4. Какие виды соединений изображены на чертежах (рис. 217).

5. Выполните чертеж одного из разъемных соединений, используя наглядные изображения деталей, входящих в них (рис. 218).
6. Какие поверхности называются сопрягаемыми? »

Неразъемные соединения

При изготовлении машины некоторые ее детали или узлы соединяют между собой с помощью неразъемных или разъемных соединений.

Неразъемными называют соединения, которые невозможно разобрать без разрушения или повреждения деталей. К ним относят заклепочные, сварные, паяные, клееные соединения, заморфовкой и прессовые.

Разъемными называют соединения, которые можно разбирать и вновь собирать без повреждения деталей.

Сварные соединения

Сварные соединения - наиболее распространенный тип неразъемных соединений. Они образуются путем местного нагрева деталей в зоне их соединения. Применяют раз-

личные виды сварки. Наибольшее распространение получили электрические, основными из которых являются дуговая и контактная сварка.

При дуговой сварке металл в зоне соединения доводится до расплавления. Соединение образуется после отвердения металла.

При контактной сварке металл в зоне соединения доводится не до жидкого, а только до пластичного состояния. Соединение образуется путем сдавливания деталей. Контактную сварку применяют в серийном и массовом производстве для нахлесточных соединений тонкого листового металла (точечная, шовная сварка) или для стыковых соединений круглого и полосового металла (стыковая сварка).

Сварка – это процесс получения неразъемного соединения путем создания связей между ионами, атомами и молекулами.

Участок сварного соединения, образовавшийся в результате кристаллизации металла сварочной ванны, называется сварным швом.

На рисунке 1 показаны различные виды сварных соединений: а ) стыковое, б ) тавровое, в ) угловое, г ) нахлёсточное, д ) электрозаклёпочное.

Рисунок 1 – Способы сварных соединений

Известно около 70 способов сварки. В соответствии с традиционной классификацией они делятся на две большие группы: сварка плавлением и сварка давлением.

При сварке плавлением металл нагревается в зоне сварки до жидкого состояния. К этому виду относятся дуговая, плазменная, лазерная, электрошлаковая, электронно-лучевая, ионно-лучевая, индукционная, газовая, термитная, литейная и др.

Для сварки давлением обязательным условием является наличие внешних сжимающих усилий. Это контактная, диффузионная, термокомпрессорная, дугопрессовая, шлакопрессовая, газопрессовая, трением, взрывом, холодная, магнито-импульсная и другие способы сварки.

В зависимости от вида источника энергии различают термический , термомеханический и механический классы сварки.

Достоинства сварных соединений.

1. Невысокая стоимость соединения вследствие малой трудоемкости сварки и простоты конструкции сварного шва.

2. Сравнительно небольшая масса конструкции.

3. Герметичность и плотность соединения.

4. Возможность автоматизации процесса сварки.

5. Возможность сварки толстых профилей.

Недостатки.

1. Невысокое качество сварного шва. Применение автоматической сварки в значительной мере устраняет этот недостаток.

2. Трудность контроля качества сварного шва.

3. Коробление деталей из-за неравномерности нагрева в процессе сварки.

4. Невысокая прочность при переменных режимах нагружения. Сварной шов является сильным концентратором напряжений.

Заклепочные соединения

Заклепка – стержень круглого поперечного сечения с головками по кнцам, одна из которых, называемая закладной , выполняется в процессе клепки. Для облегчения постановки заклепки диаметр отверстия соединяемых частей выполняют несколько большим диаметра стрежня непоставленной заклепки, в результате клепки стержень заклепки осаживается и плотно заполняет отверстие. Заклепки применяют для соединения листов, полос, прокатных профилей и т. д. Из-за большой трудоемкости применяются только в особо ответственных узлах.

Заклёпочные соединения делятся на:

    прочные (рассчитанные только на восприятие и передачу силовых нагрузок),

    плотные (герметичные) (обеспечивают герметичность конструкций в резервуарах с невысоким давлением),

    прочноплотные (восприятие силовых нагрузок и герметичность соединения).

По конструкции заклёпочные соединения делятся на однорядные и многорядные с цепным или шахматным расположением заклёпок, а в зависимости от количества плоскостей среза - одно- и многосрезные.

По характеру воздействия нагрузки на заклёпочное соединение - швы с поперечной нагрузкой, перпендикулярной оси заклёпок, и продольной, параллельной оси заклёпок.

Заклёпочные соединения по конструкции близки к паянным, сварным и клеевым соединениям. Наиболее распространены соединения внахлёстку (внакрой) и встык со стыковыми планками (рисунок 2).

Рисунок 2 – Двухрядное заклёпочное соединение внахлёстку (внакрой)

Герметичность соединения обеспечивается нанесением различных герметиков на поверхность стыка или подкладыванием под стык различных пластичных материалов. Заклёпки герметичных соединений имеют усиленные головки.

В зависимости от требований к поверхности, заклёпки могут иметь полукруглую головку, потайную, полупотайную или плоскую (в процессе клёпки для создания внутренних усилий сжатия, которые снижают возможность усталости материала).

Заклёпки изготовляют для разных способов установки. Для односторонней клепки существует множество видов заклёпок, в том числе отрывные и взрывные. Обычная клёпка может выполняться, когда наковаленка-поддержка находится с лицевой стороны и, когда наковаленка находится с тыльной стороны. Последний способ стал наиболее распространенным, поскольку требует меньшей массы наковаленки-поддержки.

Клеевые соединения

Клеевые соединения применяют в тех же конструкциях, что и сварные соединения, но преимущественно тонкостенных, выполненных из листового материала. Клеевые соединения применяют даже в ответственных машинах и сооружениях, например в самолетах и мостах. В отличие от сварки склеиванием соединяют детали не только из однородных, но и разнородных материалов, например металлическую деталь с пластмассовой. Наиболее распространенные виды клеевых соединений: нахлесточные, стыковые и с накладками.

Процесс склеивания:

    превращение клеящего вещества в состояние, пригодное для нанесения на поверхности склеиваемых материалов (расплавление, растворение, смешивание и т.д.);

    подготовка поверхностей склеивания (придание шероховатости, обезжиривание и т.д.);

    нанесение клеящего вещества и сборка соединения;

    превращение клеящего вещества в клеевой слой, соединяющий материалы при соответствующей температуре, давлении и времени выдержки.

Достоинства клеевых соединений:

    снижение требований к точности сопрягаемых деталей, быстро и экономично осуществляется сборка деталей;

    клеевой слой является хорошим тепло-, звуко- и электроизолятором; нет ослабления соединяемых деталей;

    клеевые соединения способны скреплять детали, изготовленные из абсолютно разных по физико-химическим свойствам материалов;

    клеящие материалы заполняют микрозазоры, что позволяет получить герметичные соединения;

    пленка клея улучшает распределение нагрузки и препятствует возникновению контактной коррозии.

Недостатки клеевых соединений:

    малая прочность при отрывающих нагрузках с неравномерным ее распределением;

    нестабильность физико-химических свойств во времени;

    ухудшение механических характеристик при понижении и повышении температур, при воздействии биосреды, химических реагентов и других факторах;

    необходимость тщательной подготовки поверхностей под склеивание.

Классификация клеев по типу склеивания:

    высыхающие клеи (силикатный клей, казеин, столярный клей, клей ПВА, крахмальный клейстер, наирит, 88-Н …);

    невысыхающие адгезивы (например, на основе канифоли), клеи-расплавы;

    связки на основе полимеризующихся композиций - неорганические, например алюмофосфатные связки (АФС) и органические, полимеризующиеся композиции (циакрин, эпоксидная смола).

Клей БФ, например, относится одновременно и к категории высыхающих, и полимеризующихся композиций.

Пайка

Пайка – технологический процесс соединения металлических деталей посредством присадочного материала(металла или сплавав), называемого припоем , основанный на диффузионном взаимодействии материалов соединяемых деталей и припоя с образованием химических соединений и твердых растворов и сцеплении паяного шва с металлом деталей. По конструкции паяные соединения подобны сварным и клеевым. Примерами применения паяных соединений в машиностроении могут служить радиаторы автомобилей и тракторов, тонкостенные трубопроводы. В отличие от сварки пайка позволяет соединять детали, изготовленные не только из однородных, но и из неоднородных металлов, например стальную деталь с алюминиевой. Кроме того, паять можно и детали с тонкостенными элементами, где применение сварки недопустимо из-за опасности прожога (рисунок 3).

Рисунок 3 – Паяные соединения

Спаиваемые элементы деталей, а также припой и флюс вводятся в соприкосновение и подвергаются нагреву с температурой выше температуры плавления припоя, но ниже температуры плавления спаиваемых деталей. В результате, припой переходит в жидкое состояние и смачивает поверхности деталей. После этого нагрев прекращается, и припой переходит в твёрдую фазу, образуя соединение.

Прочность соединения во многом зависит от зазора между соединяемыми деталями (от 0,03 до 2 мм), чистоты поверхности и равномерности нагрева элементов. Для удаления оксидной плёнки и защиты от влияния атмосферы применяют флюсы.

Паяные соединения подобны сварным; отличие пайки от сварки – отсутствие расплавления или высокотемпературного нагрева соединяемых деталей, так как припои имеют более низкую температуру плавления, чем материалы соединяемых деталей.

Достоинства паяных соединений:

    возможность соединять детали не только из однородных, но и разнородных материалов;

    повышенная технологичность, так как возможно осуществлять спайку в скрытых или малодоступных местах конструкции, изготовлять сложные узлы за один прием, паять не по контуру, а одновременно по всей поверхности соединения;

    подбирая соответствующие припои, можно выбрать температуру пайки так, чтобы при нагреве под пайку у предварительно термообработанных материалов сохранялись механические свойства в изделии;

    возможность распайки соединения.

Недостатки паяных соединений:

    сравнительно низкая прочность паяного соединения на сдвиг и очень низкая на отрыв;

    высокая трудоемкость изготовления деталей методами высокотемпературной спайки.

Заморфовка

Так называют процесс соединения деталей , при котором одну из них вводят в специальную пресс-форму с расплавленным или находящимся в пластическом состоянии материалом другой детали. После застывания материала детали прочно соединяются. Широко распространена заформовка деталей из стали, бронзы, латуни и других материалов в пластмассу, стекло, металл и керамику. Заформовку применяют для уменьшения стоимости обработки деталей, для их электрической, тепловой и химической изоляции, а также для экономии дефицитных материалов увеличением прочности лишь отдельных участков детали.

Запрессовка

Из соединений деталей, выполненных с натягом, наиболее распространены цилиндрические, когда одна деталь охватывает другую по цилиндрической поверхности. Примеры: соединение бандажа с центром колеса и центра колеса с осью железнодорожного вагона. Необходимый натяг осуществляется изготовлением соединяемых деталей с требуемой разностью их посадочных размеров. Неподвижность деталей обеспечивается силами трения.

Неразъёмное соединение

соединение с жёсткой механической связью деталей в каком-либо узле машины или конструкции, сохраняющееся в течение всего срока службы. При Н. с. разборка обычно невозможна без разрушения или повреждения поверхностей деталей. Основные виды Н. с.: заклёпочные, сварные, паяные, прессовые, клеевые, полученные вальцеванием, комбинированные (клеесварные и др.). Применение того или иного вида Н. с. обусловлено требованиями изготовления, сборки, эксплуатации машин и экономическими соображениями.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Неразъёмное соединение" в других словарях:

    неразъёмное соединение - — Тематики нефтегазовая промышленность EN permanent connection …

    Соединение деталей, при к ром разборка узла возможна лишь при разрушении крепления или самих деталей. К Н. с. относятся заклёпочные, сварные, клеевые соединения … Большой энциклопедический политехнический словарь

    Соединение сварное - – неразъемное соединение, выполненное сваркой. [ГОСТ 2601 84] Соединение сварное – неподвижное неразъёмное соединение двух или более частей конструкции, выполненное сваркой. По взаимному расположению соединяемых элементов различают… … Энциклопедия терминов, определений и пояснений строительных материалов

    Неразъёмное соединение при помощи заклёпок (Болгарский язык; Български) нитово съединение (Чешский язык; Čeština) nýtovaný spoj (Немецкий язык; Deutsch) Nietverbindung (Венгерский язык; Magyar) szegecselt kapcsolat (Монгольский язык) тавламал… … Строительный словарь

    Неразъёмное соединение, выполненное сваркой (Болгарский язык; Български) заваръчно съединение (Чешский язык; Čeština) svarový spoj (Немецкий язык; Deutsch) Schweißverbindung (Венгерский язык; Magyar) hegesztett kapcsolat (Монгольский… … Строительный словарь

    У этого термина существуют и другие значения, см. Соединение (значения). Соединение процесс изготовления изделия из деталей, сборочных единиц (узлов), агрегатов путём физического объединения в одно целое. Показатели работоспособности соединения… … Википедия

    Неподвижная или подвижная связь деталей, обусловленная конструкцией машины или отдельных её частей. В машиностроении под С. д. м. обычно понимают неподвижную связь (Неподвижное соединение) деталей машин; подвижная связь (соединение)… …

    Жёсткое неразъёмное соединение с помощью клея (Болгарский язык; Български) лепено съединение (Чешский язык; Čeština) lepený spoj (Немецкий язык; Deutsch) Klebeverbindung (Венгерский язык; Magyar) ragasztott kapcsolat (Монгольский язык) наамал… … Строительный словарь

    Соединение с механической связью в машинах и сооружениях, обеспечивающее неизменность взаимного положения деталей в процессе работы. Н. с. облегчают изготовление, ремонт, транспортирование изделий. Различают неподвижные разъёмные… … Большая советская энциклопедия

    неразъемное соединение - неразъёмное соединение — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] неразъемное соединение Соединение, использующееся для однократного подключения и отключения … Справочник технического переводчика

Статьи по теме: