Солнечные батареи самостоятельно. Сборка солнечной электростанции: от комплектации панелей до соединения электрических цепей. Солнечная батарея своими руками – как сделать, собрать и изготовить

Солнечные лучи, как альтернативный источник энергии, приобретают все более широкую популярность среди населения. Особенно это касается жителей частного сектора, постепенно избавляющихся от энергетической зависимости. Однако подобные системы еще довольно дороги и не все могут их приобрести. В таких ситуациях наилучшим выходом становится солнечная батарея изготовленная своим руками из подручных материалов.

Выбор фотоэлементов

Любая солнечная батарея для дома сделанная своими руками, будет в любом случае стоить значительно ниже, чем заводская. У известных производителей производится тщательный отбор фотоэлементов, в процессе которого отсеиваются заготовки, имеющие пониженные или нестабильные показатели. Поверхность готовых изделий покрывается специальным стеклом, снижающим отражение света, отсутствующим в свободной продаже. В производстве применяются многие другие методы исследования пластинок, совершенно не подходящие для домашних условий.

Однако, солнечная батарея своими руками вполне может быть изготовлена, а полученные самоделки обладают хорошей работоспособностью и не столь заметно отличаются от изделий промышленного производства. Зато экономия денежных средств получается практически в два раза, и в определенных условиях делать панели не только целесообразно, но и выгодно.

Следовательно, основная цель на стадии подготовки заключается в правильном выборе наиболее подходящих фотоэлементов. По техническим причинам пленочные или аморфные изделия можно сразу же исключить и остановиться на пластинках их кремниевых кристаллов. В самых первых домашних опытах рекомендуется воспользоваться более дешевыми элементами из поликристаллов и лишь потом переходить к работе с монокристаллическими кремниевыми материалами.

Приобрести фотоэлементы для солнечной батареи возможно на известных зарубежных торговых площадках, таких как Алиэкспресс, Амазон и других. Они находятся там в свободной продаже в виде отдельных пластинок с различной производительностью и габаритными размерами, что позволяет собрать солнечную панель требуемой мощности.

Кроме того, существуют бракованные изделия, относящиеся к так называемому классу В, имеющие различные повреждения в виде небольших сколов и трещин. На производительность это почти не влияет, зато их стоимость значительно ниже, поэтому они чаще всего используются в самодельных гелиосистемах.

Расчет и проектирование

Для расчетов солнечной батареи, собранной дома, обязательно потребуется перечень всех электроприборов и оборудования, имеющихся в доме. Сразу же нужно выяснить потребляемую мощность каждого из них.

Данные о мощности указываются в маркировке или в техническом паспорте устройства. Их значения довольно приблизительные, поэтому для панели, работающей нужно ввести поправку, то есть среднее энергопотребление умножается на поправочный коэффициент. Полученная таким образом общая мощность дополнительно умножается на 1,2, учитывая потери при работе инвертора. Мощные приборы при запуске потребляют ток, в несколько раз превышающий номинальный. В связи с этим, инвертор также должен в течение короткого времени выдерживать двойную или тройную мощность.

Если мощных потребителей довольно много, но одновременно они практически не включаются, то применяемый в системе инвертор с большим выходным током получится слишком дорогим. При отсутствии значительных нагрузок рекомендуется использовать менее мощные недорогие приборы.

Солнечная батарея в домашних условиях рассчитывается по времени работы каждого электроприбора в течение суток. Вычисленное опытным путем, значение умножается на мощность, и в результате получается суточное энергопотребление, измеряемое в киловатт-часах.

Обязательно понадобятся сведения с местной метеостанции о количестве солнечной энергии, которую можно реально получить в этой местности. Расчет данного показателя выполняется на основе показаний среднегодовой солнечной радиации и ее среднемесячных значений при самой плохой погоде. Последняя цифра позволяет определить минимальное количество электроэнергии, достаточное для решения текущих задач.

Получив исходные данные можно приступать к определению мощности одного фотоэлемента. Вначале показатель солнечной радиации нужно разделить на 1000, в результате, получаются так называемые пикочасы. В это время интенсивность солнечного свечения составляет 1000 Вт/м 2 .

Формула для расчета

Количество энергии W, вырабатываемое одним модулем, определяется по следующей формуле: W = k*Pw*E/1000, в которой Е - величина солнечной инсоляции за определенный период времени, k - коэффициент, составляющий летом - 0,5, зимой - 0,7, Pw - мощность одного модуля. Поправочный коэффициент учитывает потери мощности фотоэлементов при нагревании солнечными лучами, а также изменение наклона лучей относительно поверхности в течение дня. Зимой элементы нагреваются меньше, поэтому и значение коэффициента будет выше.

Учитывая суммарную мощность энергопотребления и данные, полученные с помощью формулы, рассчитывается общая мощность фотоэлементов. Полученный результат делится на мощность 1 элемента и в итоге будет требуемое количество модулей.

Существуют различные модели с целым рядов мощностей элементов - от 50 до 150 Вт и выше. Выбирая компоненты с необходимыми показателями, можно собрать солнечную панель с заданной мощностью. Например, если потребность в электроэнергии составляет 90 Вт, то необходимы два модуля по 50 Вт каждый. По такой схеме можно создать любую комбинацию из имеющихся фотоэлементов. В любом случае расчеты следует производить с некоторым запасом.

Количество фотоэлементов оказывает влияние на выбор емкости , поскольку именно они создают зарядный ток. Если мощность панели 100 Вт, то минимальная емкость АКБ должна быть 60 А*ч. С возрастанием мощности панелей потребуются и более мощные аккумуляторы.

Выбор места установки

Производительность солнечных панелей во многом зависит от места их установки. Поэтому, перед тем как сделать солнечную батарею своими руками, нужно заранее определиться, где она будет расположена.

Одновременно, следует учитывать следующие факторы:

  • Степень затененности. Если вокруг панели находятся здания, заросли деревьев и прочие габаритные предметы, создающие тень, она не сможет нормально функционировать и вырабатывать достаточное количество электроэнергии. Кроме того, панель может очень быстро прийти в негодность, не оправдав расходы на ее изготовление.
  • Ориентирование панелей относительно солнца. Световой поток, создаваемый солнечными лучами, должен максимально захватывать поверхность фотоэлементов. Жители северного полушария направляют панель главной стороной на юг, а в южном полушарии ориентация выполняется строго на север.
  • Угол наклона. Также выбирается в зависимости от положения и местных координат и устанавливается в соответствии с широтой. Для расчетов угла установки панели в интернете существуют онлайн-калькуляторы, выдающие наиболее подходящий градус.
  • Наличие свободного доступа для чистки, ремонта и обслуживания. В процессе эксплуатации лицевая поверхность панели постепенно покрывается пылью, грязью, а зимой - снегом. В результате, ее эффективность заметно снижается. В некоторых случаях требуется полная замена солнечных батарей. Поскольку очистка будет выполняться самостоятельно, батарею желательно устанавливать в удобном и доступном для себя месте.

Подготовка материалов и инструмента

Прежде чем начинать изготовление солнечных батарей своими руками, необходимо заготовить все требующиеся материальные ресурсы и инструменты:

  • Пластинки фотоэлементов.
  • Диоды Шоттки для шунтирования фотоэлектрических элементов.
  • Специальные шины или многожильный медный провод для соединения модулей между собой.
  • Антибликовое стекло хорошего качества или плексиглас. Любые препятствия на пути солнечных лучей приводят к росту потерь энергии. Преломление света должно быть минимальным.
  • Все материалы, необходимые для пайки.
  • Фанера, рейки или алюминиевые уголки для сборки каркаса.
  • Силиконовый герметик.
  • Метизы, крепления.
  • Защитный состав или краска, чтобы обработать деревянные поверхности.
  • Обычные инструменты - отвертки, кисти малярные, стеклорез, паяльник, ножовки по дереву и металлу и другие приспособления для конкретной ситуации.

Самая первая солнечная батарея собранная своими руками из подручных материалов должна изготавливаться из пластинок, к которым уже припаяны выводы. За счет этого снижается риск их повреждений во время сборки. Если же имеется , то будет дешевле купить обычные фотоэлементы и самостоятельно припаять к ним провода. По результатам расчетов заранее известно, какие пластинки будут соединяться последовательно, а какие - параллельно. Лучше всего составить предварительную схему подключения или макет и по ней делать монтаж.

Размеры каркаса определяются в соответствии с размерами ячеек. Между каждым элементом оставляется тепловой зазор 3-5 мм, а сама рамка не должна перекрывать края элементов.

Как собрать солнечную батарею своими руками

Сборка корпуса солнечной батареи

Сборка солнечных батарей, а именно, корпуса может выполняться в разных вариантах. В первом случае ее можно сделать из фанерных листов и деревянных реек, поэтому такой монтаж не представляет особой сложности. Конструкции выпиливаются по размерам, а затем соединяются между собой саморезами. Все стыки и швы предварительно промазываются герметиком. Все деревянные части покрываются краской или специальными защитными составами. Дальнейшие работы проводятся только после полного высыхания конструкции.

Немного сложнее изготовить солнечную батарею из алюминиевого уголка. В этом случае сборка каркаса происходит в следующем порядке:

  • Сборка из уголка прямоугольного каркаса.
  • В каждом углу конструкции сверлятся отверстия под крепления.
  • Внутренняя часть профиля по всему периметру покрывается силиконовым герметиком.
  • Внутрь каркаса на обработанные места укладывается текстолит или оргстекло, вырезанные по размеру. Их нужно как можно плотнее прижать к уголкам.
  • Внутри корпуса лист прозрачного материала фиксируется крепежными уголками, установленными по углам.
  • Дальнейшие работы проводятся после полного высыхания герметика. Предварительно, все внутренние поверхности протираются от пыли и загрязнений.

Пайка проводов и соединение фотоэлементов

Все элементы для солнечных батарей отличаются повышенной хрупкостью и требуют аккуратного обращения. Перед началом пайки они протираются, чтобы поверхность была идеально чистой. Элементы с припаянными проводниками все равно следует проверить и устранить обнаруженные недостатки.

На каждой фотопластинке имеются контакты с различной полярностью. Вначале проводники припаиваются к ним, а уже потом соединяются между собой.

При использовании шин вместо проводов, необходимо учитывать следующие особенности:

  • Шины размечаются и разрезаются на требуемое количество полосок.
  • Контакты пластин протираются спиртом, после чего на них наносится тонкий слой флюса, с одной стороны.
  • Шина прикладывается по всей длине контакта, после чего по ней нужно провести разогретым паяльником.
  • Пластина переворачивается, и такая же операция повторяется на другой стороне.

Паяльник во время монтажа нельзя сильно прижимать к пластине, иначе она может лопнуть. На лицевой стороне после пайки не должно оставаться неровностей. Если они остались, нужно еще раз пройти паяльником по шву.

Чтобы не ошибиться с размещением пластин, перед тем как их собирать, на поверхность листа рекомендуется нанести разметку с учетом всех размеров и зазоров. После этого фотоэлементы укладываются на свои места. Затем контакты панелей соединяются между собой с обязательным соблюдением полярности.

Нанесение герметизирующего слоя

Перед тем как самому герметизировать конструкцию, нужно выполнить тестирование и проверить солнечные батареи на работоспособность. Она выносится на солнце, после чего на выводах шин замеряется напряжение. Если оно в пределах нормы, можно приступать к нанесению герметика.

Один из наиболее подходящих вариантов предполагает следующие действия:

  • Силиконовый герметик наносится на самодельные солнечные батареи капельками по краям корпуса и между пластинами. После этого края фотоэлементов аккуратно прижимаются к прозрачному основанию и должны прилегать к нему как можно плотнее.
  • На каждый край пластинок укладывается небольшой груз, после чего герметик полностью высыхает, а фотоэлементы надежно фиксируются.
  • В самом конце аккуратно промазываются края рамки и все стыки между пластинами. На данном этапе герметиком покрывается все, кроме самих пластинок, он не должен попасть на их оборотную сторону.

Окончательная сборка солнечной панели

После всех операций остается лишь полностью собрать солнечную батарею в домашних условиях.

В этом случае порядок действий будет следующий:

  • В боковой части корпуса устанавливается соединительный разъем, к которому подключаются диоды Шоттки.
  • С лицевой стороны вся сборка пластинок солнечной батареи закрывается прозрачным защитным экраном и герметизируется, чтобы исключить попадание влаги внутрь конструкции.
  • Для обработки лицевой стороны рекомендуется использовать специальный лак, например, PLASTIK-71.
  • После сборки выполняется окончательная проверка, после чего солнечная батарея из подручных средств сделанная своими руками может устанавливаться на свое место.

Солнечная энергетика - это просто здорово, но вот в чем проблема: даже одна батарея стоит немалых денег, а для хорошего эффекта нужна не одна, и даже не две. Потому и приходит идея - собрать все самому. Если есть у вас небольшой навык пайки - это сделать просто. Вся сборка заключается в том, чтобы последовательно соединить элементы в дорожки, а дорожки закрепить на корпусе. Сразу скажем о цене. Набор для одной панели (36 штук) стоит в районе 70-80$. А полностью со всеми материалами солнечные батареи своими руками обойдутся вам примерно в 120-150$. Намного меньше, чем заводские. Но нужно сказать, что и по мощности они будут тоже меньше. В среднем каждый фотопреобразователь выдает 0,5 В, если последовательно соединить 36 штук, это будет порядка 18 В.

Немного теории: типы фотоэлементов для солнечных батарей

Самая большая проблема - приобрести фотоэлектрические преобразователи. Это те самые кремниевые пластины, которые преобразуют солнечный свет в электричество. Вот тут нужно немного разбираться в типах фотоэлементов. Их выпускают двух типов: поликристаллические и монокристаллические. Монокристаллические более дорогие, но имеют более высокий КПД - 20-25%, поликристаллические - дешевле, но и производительность у них меньше - 17-20%. Как их отличить внешне? Поликристаллические имеют ярко-синий цвет. Монокристаллические немного темнее и у них не квадратная, а многогранная форма - квадрат со срезанными краями.

О форме выпуска. Есть фотоэлементы для солнечных батарей с уже припаянными проводниками, а есть наборы, где проводники прилагаются и все нужно паять самостоятельно. Что покупать решает каждый сам, но нужно сказать, что без навыка хотя-бы одну пластину вы повредите, а скорее, не одну. А если и паять умеете не очень… то лучше немного дороже заплатить, но получить уже почти готовые к использованию детали.

Сделать фотоэлементы для солнечных батарей своими руками нереально. Для этого нужно уметь выращивать кристаллы кремния, а потом его еще обрабатывать. Потому нужно знать, где купить. Об этом дальше.

Где и как купить фотоэлементы

Теперь о качестве. На всех китайских площадках типа Ebay или Alibaba продается отбраковка. Те детали, которые не прошли тесты на заводе. Потому идеальной батареи вы не получите. Но цена у них не самая большая, так что можно смириться. Во всяком случае, на первых порах. Соберите пару тестовых солнечных батарей своими руками, набейте руку, а потом можно брать с завода.

Некоторые продают фотоэлементы запаянными в воск. Это предотвращает их порчу при перевозке, но избавиться от воска и не повредить пластины довольно сложно. Нужно все вместе их окунуть в горячую, но не кипящую воду. Подождать пока воск растает, потом аккуратно разъединять. Потом поочередно купать каждую пластину в горячем мыльном растворе, потом окуная в чистую горячую воду. Таких «омовений» моет понадобиться несколько, воду и мыльный раствор придется менять, и не один раз. После того как воск удалите, чистые пластины разложите на махровом полотенце для просушки. Очень хлопотное это дело. Так что лучше покупайте без воска. Так намного проще.

Теперь о покупках на китайских площадках. Конкретно о Ebay и Alibaba. Они проверены, тысячи людей ежедневно там что-то покупают. Система ничем не отличается. После регистрации, как обычно, в строке поиска набираете название элемента. Потом выбираете понравившееся по какой-то причине предложение. Обязательно выбирайте из тех вариантов, где есть бесплатная доставка (на английском free shipping). Если такой пометки нет, то доставку придется оплачивать отдельно. А она часто больше стоимости товара и уж точно больше той разницы, что вы выгадаете на цене.

Ориентироваться нужно не только на цену, но и на рейтинг продавца и на отзывы. Внимательно читайте и состав товара, его параметры и отзывы. Можно с продавцом общаться, только сообщения писать нужно на английском.

По поводу оплаты. Она на этих площадках переводится продавцу только после того, как вы отпишитесь в получении товара. А пока идет доставка, ваши деньги лежат на счете торговой площадки. Оплачивать можно с карты. Если боитесь светить данные карты, воспользуйтесь промежуточными сервисами. Они есть разные, но суть одна - ваша карта не засветится. Есть на этих площадках и возврат товара, но это долгая песня, так что лучше брать у проверенных продавцов (с хорошим рейтингом и отзывами).

Да. Посылка идет в зависимости от региона. И дело не столько в том, как долго она будет идти из Китая, как в том, как скоро ее доставит почта. В лучшем случае - недели три, но может и полтора месяца.

Как собрать

Сборка солнечной батареи своими руками состоит из трех этапов:

  1. Изготовление каркаса.
  2. Пайка солнечных элементов.
  3. Укладка в каркас и герметизация.

Каркас изготовить можно из алюминиевых уголков или из деревянных реек. Но форма каркаса, материалы, последовательность изготовления зависят от способа установки.

Способ первый: установка на окне

Батарею вешают на окне, на раму изнутри помещения или снаружи, но тоже на окне. Тогда нужно делать каркас из алюминиевого уголка, а к нему приклеивать стекло или поликарбонат. В этом случае между фотоэлементами остаются хоть небольшие зазоры, через которые немного света проникает в помещение. Размеры рамы выбираете исходя из размеров ваших фотоэлементов и того, как вы собираетесь их располагать. Также некоторую роль могут сыграть габариты окна. Учтите, что плоскость должна быть ровная - фотоэлектрические преобразователи очень хрупкие, и при малейшем перекосе будут трескаться.

Развернув готовую раму с приклеенным стеклом лицом вниз, на поверхность стекла нанести слой герметика. На герметик, снова-таки лицевой стороной вниз, разложить собранные из фотоэлементов линейки.

Из толстого упругого поролона (толщина не менее 4 см) и куска полиэтиленовой пленки (200 мк) сделать мат: поролон обтянуть пленкой и хорошо скрепить. Лучше полиэтилен спаять, но можно и скотчем воспользоваться, только все стыки должны находиться на одной стороне. Вторая должна быть ровной и гладкой. По размерам мат должен хорошо ложиться в раму (без загибов и усилий).

Уложили мат на фотоэлементы, утопленные в герметике. На него доску, которая по размерам чуть меньше рамы, а на доску солидный груз. Это нехитрое устройство поможет выгнать пузыри воздуха, которые оказались под фотоэлементами. Воздух снижает производительность, причем очень сильно. Потому чем меньше пузырьков будет, тем лучше. Всю конструкцию оставляете на 12 часов.

Теперь время снять груз и отлепить мат. Делаете это медленно и не спеша. Важно не повредить пайку и проводники. Потому тяните плавно, без рывков. После того, как мат сняли, панель нужно оставить на некоторое время - досохнуть. Когда герметик перестанет липнуть, можно навешивать панель и пользоваться.

Вместо длительной процедуры с герметиком можно взять специальную пленку для герметизации. Она называется EVA. Просто сверху на собранную и уложенную на стекло батарею расстилаете пленку и греете ее строительным феном до полной герметизации. Времени уходит в разы меньше.

Способ второй: установка на стене, крыше и т.д.

В этом случае все иначе. Задняя стенка должна быть плотной и не проводящей ток. Возможно - деревянной, фанерной и т.п. Потому имеет смысл и раму сделать из деревянных брусков. Только высота корпуса должна быть небольшой, чтобы тень от бортиков не мешала.

На фото корпус состоит из двух половинок, но это совсем необязательно. Просто легче собирать и укладывать короткие линейки, но соединений в этом случае будет больше. Да. Несколько нюансов: нужно в корпусе предусмотреть несколько отверстий. В нижней части нужны несколько штук для выхода конденсата, а также два отверстия для вывода проводников от батареи.

Затем корпус батареи покрасить белой краской - кремниевые пластины имеют довольно широкий диапазон рабочих температур, но он не безграничен: от -40 o Cдо +50 o C. А летом в закрытой коробке +50 o C набегает легко. Потому и нужен белый цвет, чтобы не перегревались фотопреобразователи. Перегрев, как и переохлаждение, ведет к снижению эффективности. Это, кстати, может стать объяснением непонятного явления: полдень, солнце жарит, а батарея стала давать меньше электричества. А она просто перегрелась. Для южных регионов, наверное, нужно уложить фольгу. Это будет эффективнее. Причем производительность, скорее всего, возрастет: будет улавливаться еще и отраженное фольгой излучение.

После того как краса высохла, можно укладывать собранные дорожки. Но в этот раз лицом вверх. Как их крепить? На каплю термостойкого герметика посредине каждой пластины. Почему не нанести по всей поверхности? Из-за температурного расширения пластина будет менять размеры. Если приклеить ее только посередине, с ней ничего не случиться. Если будет хотя-бы две точки - она рано или поздно лопнет. Потому аккуратно посередине наносите каплю, мягко прижимаете пластину. Не давите - раздавить очень легко.

В некоторых случаях пластины сначала крепились на основу - лист ДВП, выкрашенный в тот же белый цвет. А потом уже на основе закреплялись к корпусу шурупами.

После того, как все линейки уложены, последовательно их соединяете. Чтобы проводники не болтались, их можно зафиксировать несколькими каплями герметика. Вывести провода от элементов можно через днище или через бортик - как удобнее. Протяните их через отверстие, а потом залейте дырку все тем же герметиком. Теперь нужно дать всем соединениям высохнуть. Если накрыть крышкой раньше, на стекле и фотоэлементах образуется налет, который сильно снижает эффективность батареи. Потому ждем как минимум сутки (или столько, сколько указано на упаковке герметика).

Теперь дело за малым - накрыть все стеклом или прозрачным пластиком. Как крепить — дело ваше. Но на первых порах не герметизируйте. По крайней мере, до испытания. Может где-то обнаружится проблема.

И еще один нюанс. Если планируете в систему подключать аккумуляторы, понадобится поставить диод, который будет предотвращать разряд аккумулятора через батарею в ночное время или в плохую погоду. Лучше всего поставить диод «Шоттки». Его подсоединяю к батарее последовательно. Установить его лучше внутри конструкции - при высоких температурах у него уменьшается падение напряжения, т.е. в рабочем состоянии он будет меньше «садить» напряжение.

Как паять элементы для солнечной батареи

Немного об обращении с кремниевыми пластинами. Они очень-очень хрупкие, легко трескаются и ломаются. Потому обращаться нужно с ними с крайней осторожностью, хранить в жесткой таре подальше от детворы.

Работать нужно на ровной твердой поверхности. Если стол покрыт клеенкой, положите лист чего-то твердого. Пластина не должна прогибаться, а всей поверхностью жестко опираться на основу. Причем основание должно быть гладким. Как показывает опыт, идеальный вариант - кусок ламината. Он, жесткий, ровный, гладкий. Паяют на тыльной стороне, не на лицевой.

Для пайки использовать можно флюс или канифоль, любой из составов в маркере для пайки. Тут у каждого свои пристрастия. Но желательно, чтобы состав не оставлял следов на матрице.

Укладываете кремниевую пластину лицом вверх (лицо - синяя сторона). На ней есть две или три дорожки. Их промазываете флюсом или маркером, спиртовым (не водно-спиртовым) раствором канифоли. В комплекте с фотопреобразователями идет обычно тонкая контактная лента. Иногда она нарезана на куски, иногда идет в катушке. Если лента намотана на катушку, отрезать нужно кусок, равный двойной ширине солнечного элемента, плюс 1 см.

На обработанную флюсом полосу припаиваете отрезанный кусок. Лента получается намного длиннее пластинки, весь остаток остается с одной стороны. Старайтесь вести паяльник не отрывая. Насколько это возможно. Для более качественной пайки на кончике жала у вас должна быть капля припоя или олова. Тогда пайка будет качественной. Непропаянных мест быть не должно, хорошо все прогревайте. Но не давите! Особенно по краям. Это очень хрупкие изделия. Поочередно припаиваете ленты на все дорожки. Фотопреобразователи получаются «хвостатые».

Теперь, собственно, о том, как собрать солнечную батарею своими руками. Приступаем к сборке линейки. С обратной стороны пластинки тоже есть дорожки. Теперь «хвост» от верхней пластины припаиваем к нижней. Технология такая же: дорожку промазываем флюсом, потом пропаиваем. Так последовательно соединяем нужное количество фотоэлектрических преобразователей.

В некоторых вариантах на задней стороне не дорожки, а площадки. Тогда пайки меньше, но претензий по качеству может быть больше. В этом случае промазываем флюсом только площадки. И паяем тоже только на них. Вот, собственно, все. Собранные дорожки можно переносить на основание или корпус. Но есть еще множество хитростей.

Так, например, между фотоэлементами нужно выдерживать определенное расстояние (4-5 мм), что без фиксаторов не так и легко. Малейший перекос, и есть возможность порвать проводник, или сломать пластинку. Потому для задания определенного шага на кусок ламината приклеивают строительные крестики (используются при укладке плитки), или делают разметку.

Все проблемы, которые возникают при изготовлении солнечных батарей своими руками, связаны с пайкой. Потому перед герметизацией, а лучше еще и перед переносом линейки на корпус, проверить сборку амперметром. Если все нормально, можно продолжать работу.

Итоги

Теперь вы знаете, как сделать солнечную батарею в домашних условиях. Дело не самое сложное, но требует кропотливой работы.

Спрос на альтернативные источники энергии возрастает с каждым днём. Народные умельцы активно осваивают способы, как изготовить солнечную батарею своими руками.

Подготовительная стадия: что надо знать о солнечных батареях

Для самостоятельного изготовления солнечной батареи можно использовать как специально закупленные заготовки, так и по максимуму использовать материал, имеющийся в домашней мастерской – диоды, транзисторы, фольгу.

Солнечные батареи не могут в большинстве случаев заменить полноценную электростанцию и дать рабочее напряжение 220 В для работы мощных электроприборов. Ограничения возникают по причине их высокой стоимости и большой площади свободного пространства для монтажа.

Часто их применяют как дополнительный источник энергии и для не электрифицированных дачных участков.

КПД солнечных батарей зависит от погодных условий, интенсивности потока солнечных лучей, угла падения светового потока.

Небольшое количество ясных дней в конкретном регионе, сильная затенённость земельного участка, может быть причиной экономической нерентабельности новой установки: срок окупаемости будет больше, чем срок службы (до 30 лет).

Место для установки солнечной батареи для вашего дома должно быть хорошо освещённым, желательно находится выше уровня земли (на крыше), а сама конструкция иметь возможность коррекции положения в пространстве, чтобы лучи солнца падали перпендикулярно поверхности фотоэлементов.

Как самостоятельно сконструировать солнечную батарею

Чтобы собрать солнечную батарею надо:

  • Изготовить каркас – рамку из алюминиевых уголков или деревянных реек. Форму корпуса, и соответственно, форму солнечной батареи выбирать можно любую. Надо подготовить подложку из ДВП и защитное стекло в размер.
  • Спаять солнечные элементы. Самый ответственный этап: от качественной спайки зависит итоговый КПД батареи. 3. Уложить пластину в каркас и загерметизировать – завершающий этап работы.

Главная часть солнечной батареи составляют фотоэлементы, которые преобразовывают энергию дневного светила в электрическую.

Промышленность выпускает 3 вида пластин: монокристаллические, поликристаллические и тонкоплёночные (аморфные). Только 2 первых доступны по цене и закупаются как заготовки для будущих домашних экспериментов.

Различие между ними состоит в КПД – до 14% и 9% соответственно, долговечности – 30 и 20 лет службы, и чувствительности к интенсивности солнечного света.

Только батареи с поликристаллическими проводниками не снижают выработку электроэнергии в пасмурную погоду.

Имеет смысл закупать уценённые фотоэлементы второго сорта – для промышленных целей они не подходят, а существующие дефекты не ухудшают качество самоделок.

Приобретённые фотоэлементы требуется спаять между собой. Отдельный элемент даёт 0.5 В напряжения, обычно домашние умельцы ориентируются на номинальное напряжение готового изделия 18 В.

Правильно объединяя цепь, легко добиться нужных потребительских свойств: параллельное соединение увеличивает силу тока, последовательное – напряжение.

На рабочем столе должен быть паяльник, флюс и припой. Олово проволочное, флюс бескислотный, оставляющий минимум жирных следов.

Кремниевые пластины укладываются на защитное стекло, оставляя зазор 5 мм: при нагревании фотоэлементы расширяются. При спайке важно соблюдать полярность – дорожки с отрицательным знаком и положительным различить не сложно.

Обратите внимание!

Лучше приобретать солнечные элементы с уже припаянными плоскими проводниками к солнечным элементам, а самостоятельно только объединять их в цепь. Крайние элементы цепи выводятся на общую шину.

Дополнительно следует припаять диода Шоттки 31DQ03 или аналогичный, чтобы не допустить саморазряда батареи в неактивном состоянии.

Сердцевина солнечной батареи готова, осталось уложить её в подготовленный корпус. После этого по центру каждого отдельного фотоэлемента наносится одна капля термостойкого герметика (если капель несколько, то при расширении от нагревания пластина может лопнуть) и аккуратно накрывается подложкой, затем крышкой.

При помощи силикона следует загерметизировать стыки, и изделие готово.Что может быть альтернативой промышленным фотоэлементам

Фото солнечных батарей из подручных радиодеталей удивляют своей оригинальностью, хотя технические характеристики имеют не очень впечатляющие.

Обратите внимание!

Для домашнего производства электричества можно использовать разнообразный материал:

  • Транзисторы типа КТ или П, внутри которых расположен полупроводниковый кремниевый элемент. С них срезается металлическая крышка, и открывшееся пластина способна выполнить функции фотоэлемента, её напряжение 0,35 В.
  • Диоды Д223Б. Их преимущества перед другими – напряжение 0,35 В при компактных размерах, удобный корпус, лёгкое очищение от ненужной краски при помощи ацетона для последующей работы.
  • Медная фольга.

Чтобы она приобрела свойства преобразовывать солнечную энергию в электрическую, необходимо осуществить специальную обработку:

  • Обезжирить.
  • Обработать наждачной бумагой с целью удаления защитной оксидной плёнки и возможной коррозии. Прокалить на газовой горелке до образования оксида меди – пластина меняет цвет на чёрный и нагревается после этого полчаса.
  • Заготовка после медленного охлаждения аккуратно промывается под проточной водой с целью удаления черной пленки.

Искомый полупроводник – пластина с тонким слоем медной окиси. В отличие от первых двух вариантов, для дальнейшей работы паяльные работы здесь не нужны.

Требуется поместить соленый раствор 2 кусочка фольги одинакового размера, но разных по свойствам – обработанный и первоначальный вариант.

Соприкасаться они не должны, зажать «крокодильчиками» с проводами. Положительный полюс – к чистой меди, отрицательный – к оксиду. Солёный раствор в прозрачной ёмкости на 2-3 см не доходит до верхней части пластин.

Купить солнечные батареи в виду достаточно высокой цены безболезненно для семейного бюджета может не каждый. Проявите себя в техническом творчестве, порадуйте домочадцев и удивите гостей результатами своего труда.

Обратите внимание!

Фото солнечной батареи своими руками


Если вы решили собрать солнечную панель своими силами, то вы скорее всего столкнетесь с такой вещью, как пайка проводников на фотоэлементы. Сам по себе процесс пайки шин на солнечные элементы является очень кропотливым, поэтому сложным. Для того, чтобы ваше стремление к использованию альтернативных источников энергии не столкнулось с такой преградой, вы можете ознакомиться с основными аспектами правильной пайки проводников на элементы солнечной панели.

Материалы необходимы для пайки элементов:
1) солнечные элементы
2) тонкие плоские проводники
3) паяльник
4) широкие плоские проводники
5) флюс
6) припой

Рассмотрим более подробно все нюансы процесса пайки элементов солнечной панели.

Самое главное при данном процессе это не спешить. Сами солнечные элементы весьма тонкие и хрупкие, их толщина оставляет всего 0.2 мм, поэтому любое чрезмерное усилие или резкое движение может привести к их поломке.

В среднем на пайку одной солнечной панели состоящей из 36 элементов уходит порядка двух дней времени. Поэтому если вы решили собирать целые системы состоящие из множества солнечных панелей, то всерьез задумайтесь над количеством времени затраченным на пайку проводников, возможно приобретать солнечные элементы с уже готовыми проводниками будет для вас выгоднее.


Основной ошибкой тех, кто впервые решил собрать солнечную панель является то, что они считают достаточным приобрести в магазине только сами солнечные элементы, а остальное можно заменить аналогами продающимися на местном рынке радиодеталей. Однако данное видение не совсем верно, в солнечных панелях используются плоские проводники, которые обычными проводами заменять не рекомендуется, так как потребуются достаточно толстые провода, а это означает большие затраты времени на пайку, не эстетичный вид конструкции и к тому же, излишняя жесткость провода может стать причиной поломки самого элемента.

Именно поэтому автор рекомендует заказывать комплект солнечных элементов уже с диодами, шинами, тонкими плоскими проводниками для пайки элементов и более широкими для соединения секций между собой. Такой подход сэкономит как ваше время, так и деньги на доставку.

Так же нам понадобиться паяльник мощностью 60-80 Вт. Если паяльник будет менее мощным, то скорее всего он будет быстрее остывать из-за того, что большая поверхность солнечного элемента будет отбирать тепло, следовательно придется придавливать паяльник и дольше удерживать его на солнечном элементе. Это в свою очередь может вызвать поломку элемента либо его перегрев. В качестве припоя автор рекомендует использовать проволочное олово, можно даже с канифолью. В качестве флюса подойдет любой бескислотный для пайки радиоэлектроники, но желательно использовать тот, который не требует промывки и оставляет меньше жирных следов.

После того, как все необходимые инструменты и комплектующие были собраны, можно приступать к подготовке к пайке солнечных элементов. Для начала необходимо нарезать плоские проводники. Длину проводников необходимо рассчитать так, чтобы она была чуть короче ширины солнечного элемента. Таким образом, при использовании солнечных элементов размером 78 на 156 мм, длина проводника должна составлять 146 мм, учитывая зазор в 5 мм между элементами. Распределение проводника по элементу идет следующим образом: 78 мм припаивается к лицевой части элемента, 5 мм оставляет на зазор между ними, а 63 мм припаивается к трем контактам расположенным на тыльной стороне элемента.

Довольно удобно производить нарезку проводников при помощи толстого картона. Берется два листа картона шириной 63 мм и толщиной 5 мм, они складываются вместе, и затем на них наматывается проводник. Затем картон раздвигается и с одной стороны проводник разрезается ножницами.


Так же следует заметить, что при пайке элементов 6 на 6, в целях экономии, допустимо паять шину не по всей длине, а оставшуюся часть просто залудить.

Однако запомните от того насколько качественно будут припаяны проводники будет сильно зависеть КПД всей солнечной батареи.

После нарезки проводника можно приступать к подготовке элементов для пайки. Обычно лицевая торона элементов является минусом, а тыльная плюсом. поэтому по всей длине контактной площадки лицевой стороны она промазывается флюсом.


Затем плоский проводник прикладывается и фиксируется паяльником. Лудить контакт не обязательно, так как на лицевой стороне контакты посеребрены, а на самой шине имеется тонкий слой олова. Главное чтобы шина крепко припаялась к контактам и хорошо держалась, в противном случае следует все же лудить.


После этого плавным движением припаивается проводник с обратной стороны элемента, главное следить за тем, чтобы в процессе сам элемент не перегревался.

Эти действия необходимо проделать с каждым элементом, после чего начинать пайку их в общую цепь. Стандартно принято соединять элементы последовательно от плюса к минусу в одну цепочку, таким образом напряжение всех элементов суммируется, а ток остается прежним.

Ниже приведена схема пайки элементов в общую цепь:



После того, как вы определились с итоговой формой солнечной панели следует разместить элементы в несколько рядов на рабочей поверхности тыльной стороной вверх.

Есть несколько моментов, которые помогут вам зафиксировать элементы во время пайки, чтобы в конце панель имела красивый и аккуратный вид. Края солнечных элементов можно прихватить скотчем, который в последствии просто срезается канцелярским ножом. Для того, чтобы расстояние между элементами было одинаково вы можете воспользоваться строительными крестиками, которые обычно используются для укладки плитки, эти крестики обеспечат зазор в 2-5 мм.

Лучше всего сделать целый макет из фанеры, на которую приклеиваются крестики.

Ухудшение экологии, рост цен на энергоносители, стремление к автономности и независимости от прихотей государственных мужей - вот лишь несколько факторов, заставляющих самых закоренелых обывателей обращать мечтательные взгляды в сторону альтернативных источников энергии. У большинства наших соотечественников мысли о «зелёной» энергетике так и остаются идеей фикс - сказываются высокие цены на оборудование, и, как следствие, нерентабельность затеи. Но ведь никто не запрещает изготовить установку для получения бесплатной энергии самостоятельно! Сегодня мы расскажем о том, как своими руками построить солнечную батарею и рассмотрим перспективы её использования в быту.

Солнечная батарея: что это такое

Человечество загорелось идеей трансформации солнечного излучения в электрическую энергию с 30-х годов прошлого века. Именно тогда учёные из Академии наук СССР заявили о создании полупроводниковых медно-таллиевых кристаллов, в которых под действием световых лучей начинал протекать электрический ток. Сегодня это явление известно как фотоэлектрический эффект и широко используется как в гелиоэлектрических установках, так и в разнообразных датчиках.

Первые солнечные батареи известны ещё с 50-х годов прошлого века

Сила тока одного фотоэлемента измеряется в микроамперах, поэтому для получения сколь-нибудь значимой электрической мощности их объединяют в блоки . Множество таких модулей и составляют основу солнечной батареи (СБ), которую можно использовать для подключения различных электронных устройств. Если же говорить о законченном устройстве, которое можно установить под открытым небом, то корректнее говорить о солнечной панели (СП) с конструкцией, защищающей сборку фотоэлектрических модулей от внешних факторов.

Надо сказать, что КПД первых электрических гелиосистем не достигал и 10% - сказывались как недостатки полупроводниковой технологии, так и неустранимые потери, связанные с отражением, рассеиванием или поглощением светового потока. Десятилетия упорного труда учёных дали свой результат, и сегодня КПД самых современных солнечных батарей достигает 26%. Что же касается перспективных разработок, то здесь он ещё выше - до 46%! Конечно, внимательный читатель может возразить, что другие генераторы энергии работают с энергоэффективностью 95–98%. Тем не менее не следует забывать, что речь идёт о совершенно бесплатной энергии, величина которой в солнечный день превышает 100 Вт на один кв. м земной поверхности в секунду.

Современные солнечные панели генерируют электроэнергию в промышленных масштабах

Полученная с помощью солнечных панелей электроэнергия может использоваться аналогично той, что получают на обычных электростанциях - для питания различных электронных устройств, освещения, отопления и т. д. Единственное отличие, которое состоит в том, что на выходе фотоэлектронного модуля присутствует постоянный, а не переменный ток, на самом деле является преимуществом. Всё дело в том, что любая гелиосистема работает только в течение светового дня, причём её мощность очень сильно зависит от высоты солнца над горизонтом. Поскольку ночью СБ работать не может, электроэнергию приходится накапливать в аккумуляторах, а они-то все как раз и являются источниками постоянного тока.

Устройство и принцип действия

Принцип действия электрической батареи базируется на таких физических явлениях, как полупроводимость и фотоэлектрический эффект. В основе любого солнечного элемента лежат полупроводники, атомы которых испытывают недостаток в электронах (p-тип проводимости), либо имеют их избыток (n-тип). Другими словами, используется двухслойная структура с n-слоем в качестве катода и p-слоем в качестве анода. Поскольку силы удержания «лишних» электродов в n-слое ослаблены (у атомов не хватает на них энергии), то они легко выбиваются из своих мест при бомбардировке фотонами света. Далее электроны перемещаются в свободные «дырки» p-слоя и через подключённую электрическую нагрузку (или аккумулятор) возвращаются к катоду - вот так и течёт электрический ток, спровоцированный потоком солнечного излучения.

Преобразование солнечной энергии в электрическую возможно благодаря фотоэлектрическому эффекту, который описал в своих работах Эйнштейн

Как уже отмечалось выше, энергия от одного фотоэлемента крайне мала, поэтому их объединяют в модули. Последовательным подключением нескольких таких блоков наращивают напряжение батареи, а параллельным увеличивают силу тока. Таким образом, зная электрические параметры одной ячейки можно собрать батарею требуемой мощности.

Полученную от солнечной батареи электроэнергию можно накапливать в аккумуляторах и после преобразования в напряжение 220 В использовать для питания обычных бытовых прибораз

Для защиты от атмосферного воздействия полупроводниковые модули устанавливают в жёсткий каркас и закрывают стеклом с повышенным светопропусканием. Поскольку солнечную энергию можно использовать лишь в течение светового дня, то для её накопления используются аккумуляторы - расходовать их заряд можно по мере необходимости. Для повышения напряжения и его адаптации в соответствии с потребностями бытовых приборов используются инверторы.

Видео: как работает солнечная панель

Классификация фотоэлектрических модулей

Сегодня производство солнечных батарей идёт двумя параллельными путями. С одной стороны на рынке присутствуют фотоэлектрические модули, созданные на основе кремния, а с другой - плёночные, созданные с использованием редкоземельных элементов, современных полимеров и органических полупроводников.

Популярные сегодня кремниевые фотоэлементы подразделяются на несколько типов:

  • монокристаллические;
  • поликристаллические;
  • аморфные.

Для использования в самодельных солнечных батареях лучше всего использовать модули из поликристаллического кремния. Хоть КПД последних и ниже, чем у монокристаллических элементов, но зато на их работоспособность не так сильно влияет загрязнённость поверхности, низкая облачность или угол падения солнечных лучей.

Отличить поликристаллические кремниевые модули от монокристаллических несложно - первые имеют более светлый синий оттенок с выраженными «морозными» узорами на поверхности. Кроме того, тип фотоэлектрических пластин можно определить по их форме - монокристалл имеет скруглённые края, тогда как его ближайший конкурент (поликристалл) представляет собой выраженный прямоугольник.

Что же касается батарей из аморфного кремния, то они ещё менее зависимы от погодных условий и за счёт своей гибкости практически не подвержены риску повреждений при сборке. Тем не менее использование их в собственных целях ограничивается как достаточно низкой удельной мощностью на 1 квадратный метр поверхности, так и по причине высокой стоимости.

Кремниевые солнечные элементы представляют собой самый распространённый класс электрических фотопластин, поэтому они чаще всего используются для изготовления самодельных устройств

Появление плёночных фотоэлектрических модулей обусловлено как необходимостью в снижении стоимости солнечных батарей, так и потребностью получить более производительные и долговечные системы. Сегодня промышленность осваивает выпуск тонких гелиоэлектрических модулей на основе:

  • теллурида кадмия с КПД до 12% и стоимостью 1 Вт на 20–30% ниже, чем у монокристаллов;
  • селенида меди и индия - КПД 15–20%;
  • полимерных соединений - толщина до 100 нм, с КПД - до 6%.

О возможности использования плёночных модулей для постройки электрической солнечной станции своими руками говорить пока ещё рано. Несмотря на доступную стоимость, изготовлением теллуридо-кадмиевых, полимерных и меде-индиевых фотоэлементов занимаются лишь отдельные компании.

Такие достоинства плёночных фотоэлементов, как высокий КПД и механическая прочность позволяют с полной уверенностью говорить, что за ними - будущее солнечной энергетики

Хоть в продаже и можно найти батареи, созданные по плёночной технологии, в большинстве своём они представлены в виде готовых изделий. Нам же интересны отдельные модули, из которых можно построить недорогую самодельную солнечную панель - на рынке они пока ещё в дефиците.

Сводные данные по КПД солнечных элементов, которые выпускаются промышленностью, представлены в таблице.

Таблица: КПД современных солнечных батарей

Где можно взять фотоэлементы и можно ли их заменить чем-то другим

Купить пригодные для сборки солнечной панели монокристаллические или поликристаллические пластины сегодня не является проблемой. Вопрос в том, что сама идея самодельного генератора бесплатного электричества предполагает результат, который будет значительно дешевле заводского аналога. Если же покупать фотоэлектрические модули на месте, то много сэкономить не получится.

На зарубежных торговых площадках солнечные элементы представлены в широком ассортименте - можно купить как единичное изделие, так и набор всего необходимого для сборки и подключения солнечной батареи

За разумную цену солнечные элементы можно найти на зарубежных торговых площадках, например, eBay или AliExpress . Там они представлены в широком ассортименте и по вполне доступным ценам. Для нашего проекта подойдут, например, распространённые поликристаллические пластины размером 3х6 дюймов. При идеальных условиях они могут генерировать электрический ток напряжением 0.5 В и силой до 3 А, то есть 1.5 Вт электрической мощности.

Если вы горите желанием максимально сэкономить или испробовать собственные силы, то нет никакой необходимости сразу же покупать хорошие, целые модули - можно обойтись и некондицией. Всё на том же eBay или AliExpress можно найти комплекты пластин с небольшими трещинками, сколами уголков и прочими дефектами - так называемые изделия класса «B». На технических характеристиках фотоэлементов внешние повреждения не сказываются, чего нельзя сказать о цене - бракованные детали можно купить в 2–3 раза дешевле тех, что имеют товарный вид. Поэтому-то их и рационально использовать, чтобы обкатать технологию на своей первой солнечной панели.

Выбирая фотоэлектронные модули, вы увидите элементы различного типа и размера. Не думайте, что чем больше площадь их поверхности, тем выше напряжение они производят. Это не так. Элементы одного типа генерируют одинаковое напряжение независимо от габаритов. Чего не скажешь о силе тока - здесь размер имеет решающее значение.

Хоть в качестве фотоэлементов и можно использовать морально устаревшую компонентную базу, вскрытые диоды и транзисторы имеют слишком низкое напряжение и силу тока - понадобятся тысячи таких устройств

Сразу же хочется предупредить о том, что нет смысла искать аналог среди различных подручных электронных устройств. Да, получить работающий фотоэлектронный модуль можно из мощных диодов или транзисторов, извлечённых из старого радиоприёмника или телевизора. И даже сделать батарею, соединив несколько таких элементов в цепочку. Однако запитать подобной «солнечной панелью» что-либо мощнее калькулятора или светодиодного фонаря не удастся ввиду слишком слабых технических характеристик единичного модуля.

Принцип расчёта мощности батареи

Для расчёта необходимой мощности самодельной электрической гелиосистемы необходимо знать месячное потребление электроэнергии. Определить это параметр легче всего - количество потребляемого электричества в киловатт-часах можно посмотреть по счётчику или узнать, заглянув в счета, которые регулярно присылает энергосбыт. Так, если затраты составляют, например, 200 кВт×ч, то солнечная батарея должна вырабатывать в день примерно 7 кВт×ч электроэнергии.

В расчётах следует учитывать, что солнечные панели генерируют электричество только в светлое время суток, причём их производительность зависит как от угла Солнца над горизонтом, так и погодных условий. В среднем до 70% всего количества энергии вырабатывается с 9 часов утра до 16 часов вечера и при наличии даже небольшой облачности или дымки мощность панелей падает в 2–3 раза. Если же небо затянут сплошные облака, то в лучшем случае вы сможете получить 5–7% от максимальных возможностей гелиосистемы.

По графику энергоэффективности солнечной батареи видно, что основная доля генерируемой энергии приходится на время от 9 до 16 часов

Учитывая всё вышесказанное, можно подсчитать, что для получения 7 кВт×ч энергии при идеальных условиях понадобится массив панелей мощностью не менее 1 кВт. Если же учитывать уменьшение производительности, связанное с изменением угла падения лучей, погодные факторы, а также потери в аккумуляторах и преобразователях энергии, то этот показатель необходимо увеличить как минимум на 50–70 процентов. Если брать в расчёт верхний показатель, то для рассматриваемого примера будет нужна солнечная панель мощностью 1.7 кВт.

Дальнейший расчёт зависит от того, какие фотоэлементы будут использоваться. Например, возьмём упоминаемые ранее поликристаллические элементы 3˝×6˝ (площадь 0,0046 кв. м) с напряжением 5 В и силой тока до 3 А. Чтобы набрать массив фотоэлементов с выходным напряжением 12 В и силой тока, равной 1 700 Вт/12 В = 141 А понадобится соединить 24 элемента в ряд (последовательное соединение позволяет суммировать напряжение) и использовать 141 А/ 3 А = 47 таких ряда (1 128 пластин). Площадь батареи при максимально плотной укладке составит 1 128 х 0.0046 = 5.2 кв. м

Для того чтобы накопить и трансформировать солнечную энергию в привычные 220 Вольт понадобится массив аккумуляторов, контроллер заряда и повышающий инвертор

Для накопления электричества используются аккумуляторы с напряжением 12 В, 24 В или 48 В, причём их ёмкости должно хватать для того, чтобы вместить те самые 7 кВт×ч энергии. Если брать распространённые 12-вольтовые свинцовые батареи (далеко не самый лучший вариант), то их ёмкость должна быть не менее 7 000 Вт×ч/12 В = 583 А×ч, то есть три больших аккумулятора по 200 ампер-часов каждый. Следует учитывать, что КПД аккумуляторных батарей составляет не более 80%, а также то, что при преобразовании напряжения инвертором в 220 В будет теряться от 15 до 20% энергии . Следовательно, придётся докупить как минимум ещё один такой же аккумулятор для компенсации всех потерь.

К вопросу о возможности использования электрических солнечных панелей в целях отопления

Как вы уже могли, наверное, заметить, словосочетание «солнечная батарея» или «солнечная панель» постоянно упоминается в контексте устройства электрической природы. Сделано это неслучайно, поскольку точно так же нередко называют и другие солнечные панели или батареи - геоколлекторы.

Несколько гелиоколлекторов смогут обеспечить дом горячей водой и возьмут на себя часть расходов по отоплению

Возможность прямого преобразования энергии солнечного излучения непосредственно в тепло позволяет значительно повысить производительность таких установок. Так, современные геоколлекторы с селективным покрытием вакуумных трубок имеют КПД 70–80% и вполне могут использоваться как в системах горячего водоснабжения, так и для обогрева помещений.

Конструкция солнечного коллектора с вакуумными трубками позволяет минимизировать теплопередачу во внешнюю среду

Возвращаясь к вопросу о том, можно ли использовать электрическую солнечную панель для питания отопительных приборов, давайте рассмотрим, сколько тепла понадобится, например, для дома в 70 кв. метров. Исходя из стандартных рекомендаций в 100 Вт тепла на 1 кв. м площади помещения, получим затраты 7кВт энергии в час или примерно 70 кВт×ч в сутки (обогревающие приборы ведь не будут включены постоянно).

То есть 10 самодельных батарей общей площадью 52 кв.м. Представляете себе махину шириной, скажем, 4 м и длиной более 13 м, а также блок из 12-вольтовых аккумуляторов суммарной ёмкостью 7200 ампер-часов? Такая система не сможет даже выйти на самоокупаемость до того, как будет выработан ресурс аккумуляторных батарей. Как видите, говорить о целесообразности применения солнечных батарей в целях отопления пока ещё слишком рано.

Выбор места для установки электрической гелиопанели

Выбирать место, где будет установлена солнечная панель, необходимо ещё на этапе проектирования. Это может быть либо обращённый на юг скат крыши, либо открытая площадка на загородном участке. Второе, конечно же, предпочтительнее в силу нескольких причин:

  • установленную внизу солнечную батарею легче обслуживать;
  • на земле проще смонтировать поворотное устройство;
  • исключается дополнительная нагрузка на кровлю и её повреждение при установке гелиосистемы.

Место установки электрической панели должно быть открыто для солнечных лучей в течение всего светового дня, поэтому рядом не должно быть деревьев или построек, тень от которых могла бы падать на её поверхность.

Выбирая место для установки гелиосистемы, обязательно учитывают возможность затенения солнечных батарей окружающими предметами

Второе обстоятельство, вынуждающее искать такую площадку до начала сборки солнечной батареи, связано с определением габаритов панели. Собирая устройство своими руками, мы можем достаточно гибко подходить к выбору его размеров. В итоге можно получить установку, которая идеально впишется в экстерьер.

Приступаем к изготовлению солнечной батареи своими руками

Сделав все необходимые расчёты и определившись с местом для установки солнечной батареи, можно приступать к её изготовлению.

Что понадобится в работе

Кроме купленных фотоэлементов, при постройке электрической гелиопанели понадобятся такие материалы:

  • медный многожильный провод;
  • припой;
  • специальные шины для соединения выводов фотоэлементов;
  • диоды Шоттки, рассчитанные на максимальный ток одной ячейки;
  • припой;
  • деревянные рейки или алюминиевые уголки;
  • фанера или OSB;
  • ДВП или другой жёсткий листовой диэлектрический материал;
  • оргстекло (можно использовать поликарбонат, антибликовые сверхпрозрачные стёкла или поглощающие ИК-лучи оконные стёкла толщиной не менее 4 мм);
  • силиконовый герметик;
  • саморезы;
  • антибактериальная пропитка для дерева;
  • масляная краска.

При выборе стекла для солнечной батареи следует выбирать поглощающие ИК-лучи сорта с максимальным светопропусканием и минимальным светоотражением

Для работы понадобится вот такой нехитрый инструмент:

  • паяльник;
  • ножовка или электролобзик;
  • набор отвёрток или шуруповёрт;
  • малярные кисти.

Если под солнечную панель будет сооружаться дополнительный кронштейн или поворотная опора, то, соответственно, список материалов и инструментов должен пополнить деревянный брус или металлические уголки, стальной пруток, сварочный аппарат и т. д. При установке СБ на земле площадку можно забетонировать или выложить плиткой.

Инструкция по ходу работ

В качестве примера рассмотрим процесс постройки электрической гелиосистемы из рассматриваемых выше солнечных элементов 3х6 дюйма с напряжением 0.5 В и силой тока до 3А. Для заряда 12-вольтового аккумулятора необходимо, чтобы наша батарея «выдавала» не менее 18 В, то есть понадобится 36 пластин. Сборку следует выполнять поэтапно, иначе не избежать ошибок в работе. Следует помнить, что любые переделки, равно как и излишние манипуляции с фотоэлементами могут привести к их повреждению - эти устройства отличаются повышенной хрупкостью.

Для изготовления полноценной солнечной батареи понадобится несколько десятков фотоэлементов

Изготовление корпуса

Корпус солнечной батареи представляет собой плоский ящик, закрытый с одной стороной фанерой, а с другой - прозрачным стеклом. Для изготовления каркаса можно использовать как алюминиевые уголки, так и деревянные рейки. Второй вариант проще в работе, поэтому для изготовления своей первой панели рекомендуем выбрать его.

Приступая к сооружению солнечной панели, сделайте небольшой чертёж - в дальнейшем это поможет сэкономить время и избежать ошибок с размерами

Из реек сечением 20х20 мм собирают прямоугольный каркас с внешними размерами 118х58 см, усиленный одной поперечиной.

Корпус солнечной батареи представляет собой деревянный щит с бортиками высотой не более 2 см - в таком случае они не будут затенять фотоэлементы

В нижних торцах корпуса, а также в распорной планке сверлят вентиляционные устройства. Они будут сообщать внутреннюю полость с атмосферой, благодаря чему стекло не будет запотевать с внутренней стороны. После этого из листа оргстекла вырезают прямоугольник, соответствующую внешним габаритам рамы.

Проделанные в рейках отверстия служат для вентиляции внутреннего пространства панели

Обратную сторону короба зашивают фанерой либо OSB. Корпус обрабатывают антисептиком и окрашивают масляной краской.

Чтобы защитить деревянный корпус от атмосферных воздействий, его окрашивают масляной краской

По размеру внутренних полостей корпуса вырезают 2 подложки для фотоэлементов. Их использование во время монтажа пластин не только сделает работу удобнее, но и снизит риск повреждения хрупкого стекла. Для подложек можно взять любой плотный материал - ДВП, текстолит и т. д. Главное, чтобы он не проводил электрический ток и хорошо противостоял нагреву.

В качестве подложек для фотоэлементов можно использовать любой подходящий диэлектрик, например, перфорированную ДВП

Сборка пластин

Сборку пластин начинают с распаковки. Нередко для сохранности фотоэлементов их собирают в стопку и заливают парафином. В этом случае изделия погружают в ёмкость с водой и подогревают на водяной бане. После того как парафин будет растоплен, пластины следует отделить друг от друга и хорошо просушить.

Удаление воска с пакета пластин лучше всего проводить на водяной бане. Способ, который показан на рисунке,зарекомендовал себя не лучшим образом - при кипении пластины начинают вибрировать и ударяться друг о друга

Фотоэлементы раскладывают на подложке таким образом, чтобы их выводы были направлены в нужную сторону. В нашем случае все 36 пластин соединяются последовательно - это позволит «набрать» нужные нам 18 В. Для простоты монтажа следует паять по 6 пластин, получая 6 отдельных цепочек.

Перед пайкой фотоэлементы раскладывают в цепочки нужной длины

Зная принцип формирования солнечных панелей, вы сможете легко подобрать требуемое напряжение и силу тока. Всё очень просто: сначала собирается группа последовательно соединённых пластин, которая даст нужное напряжение. После этого отдельные блоки соединяют параллельно - при этом будет суммироваться их сила тока. Таким образом, можно получить панель любой мощности.

На токопроводящие дорожки фотоэлементов наносится припой и при помощи маломощного паяльника детали соединяются друг с другом.

Покупая более дешёвые фотоэлементы без выводов, будьте готовы к кропотливой работе по пайке проводников

Собрав все шесть групп, в центр каждой пластины необходимо нанести каплю силиконового герметика. Затем цепочки фотоэлементов разворачивают и аккуратно приклеивают к подложке.

Для фиксации фотоэлементов на подложкке используют силиконовый герметик или резиновый клей

К плюсовому выводу каждой цепочки припаивают диод Шоттки - он защитит аккумулятор от разряда через панель в тёмное время суток или при сильной облачности. Используя специальную шину или медную оплётку, отдельные блоки соединяют в единую цепь.

На схеме электрических подключений элементы солнечной панели обведены пунктирной линией

При последовательном соединении плюсовой вывод должен присоединяться к минусовому контакту, а при параллельном - к одноимённому.

Установка пластин в корпус

Собранные на подложке фотоэлементы укладывают в корпус и фиксируют к фанере при помощи саморезов. Отдельные части солнечной батареи соединяют друг с другом медным проводником. Его можно пропустить через одно из вентиляционных отверстий в поперечине - так не будет создаваться помех при установке стекло.

К «плюсу» и «минусу» припаивают многожильный кабель, который выводят наружу через отверстие в нижней части корпуса - он понадобится для подключения панели к аккумулятору. Для предотвращения повреждения пластин, кабель прочно фиксируют к деревянной раме.

После установки пластин все навесные элементы фиксируют при помощи термоклея или герметика

Сверху солнечную батарею накрывают листом оргстекла, который крепят при помощи уголков или саморезов. Чтобы защитить фотоэлементы от влаги, между рамой и стеклом наносят слой силиконового герметика. На этом сборку можно считать законченной - можно выносить солнечную батарею на крышу и подключать к потребителям.

После укладки и фиксации стеклянного покрытия солнечная панель готова к работе

Эффективность работы солнечной батареи зависит от её ориентации на солнце - максимальная мощность достигается при падении солнечных лучей под прямым углом. Чтобы повысить производительность установки, её размещают на поворотном каркасе. Эта конструкция представляет собой деревянную или металлическую раму, установленную на поворотной горизонтальной оси.

Для максимальной эффективности солнечная панель должна быть сориентирована строго на Солнце. Лучше всего с этой задачей справляются автоматические установки, называемые гелиотрекерами

Для поворота и фиксации рамы можно использовать как механический привод (например, цепную передачу), так и подпорную планку со ступенчатой регулировкой. Наиболее совершенные поворотные устройства оснащают узлом вращения в вертикальной плоскости и системой автоматического слежения за Солнцем. Подобную аппаратуру можно собрать, используя шаговые двигатели и современный микроконтроллер, например, Arduino.

Постройка гелиотрекера в домашних условиях - чрезвычайно сложная задача, поэтому чаще всего умельцы обходятся простым каркасом с наклонной или зафиксированной рамой

Подключение солнечной батареи к системе автономного электроснабжения следует выполнять посредством контроллера заряда. Это устройство не только правильно распределит потоки электрической энергии, но и предотвратит глубокий разряд АКБ, увеличивая срок её эксплуатации. Все подключения, включая присоединение 220-вольтового инвертора, следует выполнять медными проводами сечением не менее 3–4 кв. мм - это позволит избежать оммических потерь энергии.

Контроллер заряда солнечной батареи позволит ей работать с максимальной токоотдачей и предохранит аккумуляторы от чрезмерного разряда

Напоследок хотелось бы порекомендовать следить за солнечной батареей не только по индикаторам и стрелкам приборов. Помните о том, что загрязнённое стекло может снизить производительность установки на 50% и более. Не забывайте проводить регулярную уборку, и собранная своими руками установка отплатит вам киловаттами совершенно бесплатной, а главное, экологически чистой энергии.

Видео: сборка солнечной панели своими руками

Сегодня нет никаких преград для сборки солнечной панели своими руками. Нет проблем ни с приобретением фотоэлементов, ни с покупкой контроллера или преобразователя энергии. Надеемся, что эта статья станет для вас отправной точкой на пути к автономному дому, и вы наконец-то возьмётесь за дело. Будем ждать от вас вопросов, идей и предложений относительно конструирования и улучшения солнечных батарей. До новых встреч!

Похожие записи:

Похожие записи не найдены.

Статьи по теме: