Соединения разъемные. Неразъёмные соединения (НС) Виды электрических соединений разъемные неразъемные

Соединения, при разборке которых нарушается целостность составных частей изделия, называют неразъемными. К таким соединениям относятся заклепочные, сварные, клееные, паяные и прессовые соединения.

Заклепочным называется соединение деталей с применением заклепок – крепежных деталей из высокопластичного материала, состоящих чаще всего из стержня 1 и закладной головки 2; конец стержня расклепывается для образования замыкающей головки 3 (рис. 48).

а б в
г д

К достоинствам заклепочных соединений относятся: стабильность и контролируемость качества, а также меньшие повреждения соединяемых деталей при разъеме. К недостаткам

деталей, для скрепления деталей из разных материалов, деталей из материалов, не допускающих нагрева или несвариваемых. В наше время заклепочные соединения вытесняются более экономичными и технологичными сварными и клееными соединениями, так как отверстия под заклепки ослабляют сечения деталей на 10–20%, а трудоемкость изготовления и масса заклепочной конструкции обычно больше, чем сварной или клееной.

По функциональному назначению заклепочные соединения подразделяют на прочные и плотные , последние обеспечивают не только прочность, но и герметичность соединения.

По конструкции заклепочные соединения бывают нахлесточные и стыковые с одной или двумя накладками. Ряды поставленных заклепок образуют заклепочный шов, который может быть однорядным и многорядным, односрезным или двухсрезным. На рис. 49 показаны: двухрядный односрезный нахлесточный шов (а ), однорядный односрезный стыковой шов с одной накладкой (б ), однорядный двухсрезный стыковой шов с двумя накладками (в ).

Конструкция и размеры заклепок нормальной точности и повышенного качества стандартизованы. По форме головок заклепки бывают (рис. 50) с полукруглой (а ), потайной (б ), полупотайной (в ), плоской (г ), полукруглой низкой и другими головками. В тех случаях, когда нежелательно или недопустимо заклепочное соединение подвергать ударам, применяют полупустотелые заклепки, замыкающая головка которых образуется развальцовкой.

Для соединения тонких листов и неметаллических материалов, а также когда в конструкции нужны отверстия для электрических, крепежных или других деталей, применяют пустотелые заклепки

Обычно клепаные соединения нагружены силами, действующими параллельно плоскости контакта соединяемых деталей, поэтому разрушение соединения может произойти в результате следующих причин:

– срез заклепок по сечению 1–1 под действием касательных напряжений (рис. 51);

Кроме того, предполагается, что нагрузка F распределяется между заклепками шва равномерно, а сила трения, возникающая между склепанными деталями, в расчете на прочность не учитывается. В нахлесточном соединении (см. рис. 51) внешняя сила F образует пару сил, моментом которой ввиду малого плеча пренебрегаем.

Расчетные формулы на прочность заклепочного соединения имеют следующий вид:

1. Прочность заклепок на срез (см. рис. 51)

t cp =F /(zA cp ) ≤ ,

где А cp =i pd 0 2 /4; i – число плоскостей среза; z – число заклепок шва; А ср – площадь среза заклепки.

2. Прочность соединения на смятие

s c м =F /(zA c м ) ≤ ,

где А см =d 0 d min ; d min – меньшая из толщин соединяемых деталей (как известно из сопротивления материалов, при расчете на смятие цилиндрических поверхностей в расчет вводится не действительная, а условная площадь смятия, равная площади диаметрального сечения сминаемой части детали).

3. Прочность соединяемых деталей на растяжение (рис. 52)

s p =F /(zA p ) ≤ ,

где A p =(p d 0)d min .

4. Прочность соединяемых деталей на срез

t" cp =F /(zA" cp ) ≤ ,

где A" cp =2(е d 0 /2)d min (здесь длина сечения 2–2 уменьшена на d 0 /2, так как вначале материал сминается на эту величину и лишь затем происходит срез).

Значения допускаемых напряжений, входящих в приведенные выше формулы, имеются в справочниках.

Из условия равнопрочности соединений принимают шаг заклепок р =(3...6)d , расстояние между рядами заклепок берется равным (2...3)d , где d – диаметр заклепки.

Сварным называется неразъемное соединение, выполненное сваркой (рис. 53), т.е. путем установления межатомных связей между свариваемыми частями при их нагревании или пластическом деформировании.

К достоинствам сварных соединений относятся: значительно меньшая трудоемкость производства сварных конструкций в сравнении с заклепочными при значительно больших возможностях механизации и автоматизации технологического процесса; сварка позволяет соединять детали сложной формы, обеспечивает сравнительно бесшумный технологический процесс и герметичность соединений. Недостатки сварных соединений: недостаточная надежность при ударных и вибрационных нагрузках, коробление деталей в процессе сварки, концентрация напряжений и сложность проверки качества соединений.

Сварные соединения являются наиболее распространенными и совершенными из неразъемных соединений, так как лучше других обеспечивают условия равнопрочности, снижения массы и стоимости конструкции. В настоящее время сваривают детали, изготовленные из черных, многих цветных металлов, а также из пластмасс.

Существуют следующие виды сварных соединений: рис. 53: стыковое (а ), нахлесточное (б ); рис. 54: угловое (а ), тавровое (б ). Шов стыкового сварного соединения называется стыковым, а швы нахлесточного, углового и таврового соединений называют угловыми. Сварные швы могут быть непрерывными и прерывистыми; последние имеют промежутки по длине шва. Металл шва, наплавленный за один проход, называется валиком, один или несколько валиков, расположенных на одном уровне поперечного сечения шва, называется слоем .

Сварные швы по форме поперечного сечения могут быть нормальными (рис. 53, б ), выпуклыми (рис. 53, а ; 54, а ) и вогнутыми (рис. 54, б ). Выпуклость шва обозначается g , вогнутость – D; их величина не должна превышать 3 мм. Выпуклый угловой шов, кажущийся на первый взгляд более прочным, имеет значительную концентрацию напряжений по сравнению с нормальным и особенно вогнутым швами, так как выпуклый шов образует более резкое изменение сечения детали в месте соединения. Поэтому при действии на конструкцию переменных нагрузок рекомендуется применять вогнутые угловые швы, хотя их вогнутость обычно достигается механической обработкой, которая значительно увеличивает стоимость соединения. У стыковых швов со снятыми механическим способом выпуклостями концентрация напряжений практически отсутствует.

Основным критерием работоспособности сварных соединений является прочность, причем предполагается, что напряжения в опасных сечениях распределены равномерно.

Расчет стыковых соединений производится по нормальным напряжениям растяжения или сжатия по номинальному сечению соединяемых элементов без учета выпуклости шва:

s"=F/(dL) ,

где d – толщина соединяемых элементов; L – длина шва; – допускаемое напряжение металла шва для принятой технологии сварки (напряжение в металле шва обозначаем соответствующей буквой со штрихом).

Основным геометрическим и расчетным параметром угловых швов является катет K (если катеты сечения шва не равны, то шов характеризуют меньшим катетом). В большинстве случаев катет шва принимают равным толщине соединяемых деталей.

Расчет угловых швов производится по касательным напряжениям сдвига в опасном сечении 1–1 , расположенном в биссекторной плоскости прямого угла (см. рис. 54, а ), без учета выпуклости шва:

t"=F/(0,7KL) ,

где 0,7K =K sin45° – высота опасного сечения шва; L – суммарная длина швов (см. рис. 6, б ); – допускаемое напряжение металла шва для принятой технологии сварки.

В нахлесточном соединении (см. рис. 53, б ) внешние силы F образуют пару сил, моментом которой ввиду малого плеча пренебрегают. Приведенные расчетные формулы пригодны для швов сварных конструкций, нагруженных осевыми силами, но не моментами; последний случай встречается реже.

Допускаемые напряжения для сварных швов принимают в зависимости от допускаемых напряжений на растяжение для основного металла с учетом характера действующих нагрузок и принятой технологии сварки. Ориентировочно для стальных конструкций при статической нагрузке:

=(0,9…1); =; =(0,6…0,65).

Здесь = s m /[s ], где s m – предел текучести основного материала; [s ] – допускаемый коэффициент запаса прочности ([s ]=1,35...1,7, большие значения для легированных сталей).

Для переменных нагрузок допускаемые напряжения понижают с учетом характеристики цикла напряжений, эффективного коэффициента концентрации напряжений в сварных швах, числа циклов нагружения других факторов.

Максимальную длину лобового и косого швов не ограничивают; длину фланговых швов следует принимать не более 60K , где K – катет шва во избежание значительной неравномерности распределения нагрузки по длине шва. Минимальная длина швов не должна быть менее 30 мм, так как иначе неизбежные дефекты (непровар в начале шва и образование кратера в конце шва) будут значительно снижать его прочность. Учитывая дефекты, короткие швы следует увеличить по длине на 5–10 мм против расчетной величины. Величина перекрытия соединяемых элементов в нахлесточных соединениях не должна быть меньше четырехкратной толщины материала.

Швы в конструкциях следует располагать так, чтобы они были нагружены равномерно. Поэтому соединение симметричных элементов следует выполнять симметрично расположенными швами и наоборот; напряжения растяжения или сжатия должны распределяться по сечению соединяемых элементов равномерно, а продольная сила должна проходить через центр тяжести сечения.

Сказанное выше о видах сварных соединений, типах сварных швов, их параметрах и расчетных формулах относится также к сварным соединениям из алюминия, алюминиевых сплавов, винипласта, полиэтилена и других материалов.

Сварка алюминия производится в среде защитного газа неплавящимся металлическим электродом с подачей в сварочную ванну присадочной проволоки.

Сварка винипласта и полиэтилена производится горячим воздухом с присадочным прутком. Разработаны методы сварки пластмасс нагревательным элементом, токами высокой частоты, ультразвуком.

Клееным называется неразъемное соединение составных частей изделия с применением клея. Действие клеев основано на образовании межмолекулярных связей между клеевой пленкой и поверхностями склеенных материалов.

Достоинства клееных конструкций заключаются в возможности соединения практически всех конструкционных материалов в любых сочетаниях, любой толщины и конфигурации, причем обеспечивается герметичность и коррозионная стойкость соединений. В отличие от сварных, клееные соединения почти не создают концентрации напряжений, не вызывают коробления деталей и надежно работают при вибрационных нагрузках. По сравнению с другими клееные соединения дешевле, а клееные конструкции обычно легче других при прочих равных условиях.

Недостатки клееных соединений: сравнительно невысокая прочность, в особенности при неравномерном отрыве, относительно невысокая долговечность некоторых клеев («старение»), низкая теплостойкость, необходимость соблюдения специальных мер по технике безопасности (установка приточно-вытяжной вентиляции); для большинства соединений требуется нагрев, сжатие и длительная выдержка соединяемых деталей.

Клееные соединения применяют для соединения металлических, неметаллических и разнородных материалов, причем в настоящее время имеется тенденция к расширению применения этих соединений. Так, например, клееные соединения применяют в таких ответственных конструкциях, как летательные аппараты и мосты.

Клеи делят на конструкционные (для прочностных соединений) и неконструкционные (для ненагруженных соединений).

По природе основного компонента различают неорганические, органические и элементоорганические клеи. К неорганическим клеям относят жидкие стекла, применяемые для склеивания целлюлозных материалов.

Существует большое разнообразие конструкционных клеев, отличающихся физико-механическими свойствами и технологией их применения. Наибольшее применение в машиностроении и приборостроении имеют органические клеи на основе синтетических полимеров, например универсальные клеи БФ, технические условия на которые стандартизованы, и эпоксидные клеи с наполнителем и без наполнителя. При необходимости повышенной теплостойкости (до 1000°С) применяют элементоорганические клеи, обладающие сравнительно меньшей эластичностью. Клеи не являются проводниками, поэтому при необходимости обеспечить электропроводность в них добавляют порошкообразное серебро.

Для склеивания деталей требуется механическая и химическая подготовка их поверхностей. Механическую подготовку и пригонку металлических деталей производят на металлорежущих станках или вручную напильником, сложные поверхности подвергают пескоструйной обработке; пластмассовые детали обрабатывают резанием или зачищают наждачной шкуркой. Химическая подготовка заключается в очищении и обезжиривании склеиваемых поверхностей ацетоном, спиртом, бензином или бензолом.

Клей наносят на поверхность кистью или пульверизатором. Прочность клееного соединения в значительной степени зависит от толщины клеевого слоя, которая в основном определяется вязкостью клея и давлением при склеивании. Рекомендуются толщины клеевого слоя для различных клеев в пределах 0,05–0,25 мм; при толщине клеевого шва 0,5 мм и более прочность соединения значительно снижается. Наибольшее влияние на прочность клееного соединения оказывает температура эксплуатационного режима, которая для большинства конструкционных клеев рекомендуется в пределах от минус 60°С до плюс 80°С.

В прочностных клееных конструкциях наиболее распространены стыковые и нахлесточные соединения, примеры которых приведены на рис. 55: а – стыковое с накладкой; б – косостыковое; в – стыковое; г – стыковое соединение труб одинакового диаметра; д – нахлесточное; е – нахлесточное шпунтовое; ж – косостыковое соединение труб одного диаметра; з – нахлесточное (телескопическое) соединение труб разного диаметра.

Расчетные формулы на сдвиг и отрыв для клееных соединений имеют вид

t=F/A к ≤ [t], s p =F/A к ≤ [t],

где F действующая сила; А к – площадь склеивания. Допускаемое напряжение на сдвиг [t]=t в /[s ], а на отрыв =s в /[s ], где для распространенных клеев предел прочности при сдвиге t в ≤ 60 МПа,

предел прочности при растяжении s в ≤ 50 МПа, а допускаемый коэффициент запаса прочности [s ]=1,2...1,5.

Прочность клееного соединения зависит от площади склеивания. Наиболее прочными являются соединения, работающие на сдвиг или равномерный отрыв, когда напряжения по всей площади склеивания можно полагать распределенными равномерно. При работе на отдирание (неравномерный отрыв) прочность соединения не определяется площадью склеивания, так как оно будет разрушаться последовательными участками; в таких случаях применяют комбинированные соединения – клееклепаные или клеесварные.

Паяные соединения. Пайкой называется процесс образования неразъемного соединения с межатомными связями путем нагрева соединяемых материалов ниже температуры их плавления и применения легкоплавкого присадочного материала – припоя. В температуре нагрева состоит принципиальное отличие пайки от сварки. Соединение, образованное пайкой, называется паяным.

Процессы пайки сравнительно легко поддаются механизации и автоматизации. Во многих случаях применение пайки приводит к значительному повышению производительности труда, снижению массы и стоимости конструкций. По прочности паяные соединения уступают сварным.

В отличие от сварки пайка позволяет соединять детали из разнородных материалов, например, черных и цветных металлов и сплавов, стекла, керамики, графита. Кроме того, паять можно и детали с тонкостенными элементами, где применение сварки недопустимо из-за опасности прожога тонких стенок при сварке. Применение пайки в машиностроении возрастает в связи с широким внедрением новых конструкционных материалов, в том числе высокопрочных легированных сталей, многие из которых плохо свариваются. Примерами применения пайки в машиностроении могут служить радиаторы автомобилей и тракторов, лопатки турбин, топливные и масляные трубопроводы и др. Пайка является одним из основных видов соединения в приборостроении, в том числе в радиоэлектронике.

По признаку взаимного расположения и формы паяемых элементов типы паяных соединений подобны сварным и клееным и носят те же названия, а именно: нахлесточное, стыковое, косостыковое, тавровое, телескопическое, комбинированное. Если паяемые элементы соединены по линии или в точке, то соединение называется соприкасающимся.

Многообразные способы пайки можно подразделить на два основных вида (в скобках даны термины ИСО):

– низкотемпературная пайка (мягкая пайка), происходящая при температуре, не превышающей 723 К (450°С),

– высокотемпературная пайка (твердая пайка), происходящая при температуре, превышающей 723 К.

В первом случае применяют припои ПОС (мягкие), во втором – припои ПМЦ и серебряно-медные (твердые). В качестве припоев применяют как чистые металлы, так и сплавы.

Для уменьшения вредного влияния окисления поверхностей при пайке применяют флюсы (на основе буры, хлористого цинка, канифоли); паяют в среде нейтральных газов (аргона) или в вакууме.

Нагрев припоя и деталей при пайке осуществляют паяльником, газовой горелкой, токами высокой частоты, в термических печах, погружением в ванну с расплавленным припоем и пр. При пайке токами высокой частоты или в термической печи припой укладывают в процессе сборки деталей в месте шва в виде проволочных контуров, фольговых прокладок, лент, мелкой дроби или паст в смеси с флюсом.

Перед пайкой паяемые поверхности деталей обезжиривают и очищают от окислов. После подготовки соединяемых деталей к пайке и последующей сборки их обычно подогревают до температуры плавления припоя и в зазоры между ними вводят расплавленный припой.

Паяные швы из мягких припоев малопрочны, поэтому их применяют для соединений ненагруженных, малонагруженных, не подверженных действию ударных нагрузок и вибрацией. Из-за низкой температуры плавления не рекомендуется применять их для соединений, работающих при температуре выше 100°С. Мягкие припои широко применяют в приборостроении. Твердые припои применяют для соединений, несущих нагрузки. При статических нагрузках применяют припои на медной основе, а для соединений, воспринимающих ударные и вибрационные нагрузки, – припои на серебряной основе.

Расчет на прочность паяных соединений осуществляют по формулам для однотипных сварных и клееных соединений. Допускаемое напряжение на срез можно принимать для паяных швов из оловянно-свинцовых припоев =20..30 МПа, из медно-цинковых припоев =175...230 МПа. Для паяных швов из серебряно-медных припоев предел прочности при растяжении в полтора-два раза больше, чем при срезе и равен 400...600 МПа.

Прессовым называется соединение составных частей изделий с гарантированным натягом вследствие того, что размер охватываемой детали больше соответствующего размера охватывающей детали.

Прессовые соединения передают рабочие нагрузки за счет сил трения покоя между сопряженными поверхностями. Преимущественное распространение имеют прессовые соединения по цилиндрическим поверхностям. Следует отметить, что прессовые соединения занимают промежуточное положение между неразъемными и разъемными соединениями, так как допускают нечастую разборку без нарушения целостности составных частей изделия.

Нагрузочная способность прессовых соединений определяется преимущественно натягом, который назначают в соответствии с посадками. Однако возможны случаи, когда посадка не может быть реализована в конструкции по условию прочности детали.

Достоинства прессовых соединений: простота и технологичность конструкций за счет отсутствия соединительных деталей, обеспечение хорошего центрирования соединяемых деталей, возможность применения при очень больших осевых нагрузках и крутящих моментах, высокая надежность при ударных нагрузках.

Основные недостатки прессовых соединений: сложность демонтажа и возможность ослабления натяга после разборки, ограниченность нагрузочной способности при вибрационных нагрузках за счет фреттинг-коррозии (разрушение сопряженных поверхностей при очень малых колебательных относительных перемещениях), рассеивание величины натяга и нагрузочной способности соединения за счет допусков на изготовление деталей.

Характерными примерами применения прессовых соединений являются колесные центры и бандажи железнодорожного подвижного состава, центры и венцы зубчатых и червячных колес (рис. 56, а ), крепление на валу вращающихся колец подшипников качения (рис. 56, б ).

Прессовые соединения могут быть получены тремя способами: продольной сборкой путем запрессовки осевой силой (рис. 57);

следствие, снижение нагрузочной способности соединения в 1,5–2 раза.

В результате сборки прессового соединения за счет натяга на сопрягаемых поверхностях возникают контактные давления p (рис. 57), которые полагаем равномерно распределенными по поверхности контакта. Если на конструкцию действует осевая сила F и крутящий момент Т , то на сопрягаемых поверхностях возникнут силы трения, которые должны исключить относительное смещение деталей соединения. Пользуясь принципом независимости действия сил, можно написать условия равновесия:

F≤ pdlpf, T ≤ pdlpfd/2,

где f – коэффициент сцепления; для стальных и чугунных деталей f =0,08...0,1 при запрессовке; f =0,12...0,14 при сборке с нагревом или охлаждением; при гидропрессовании f =0,12; если одна из деталей латунная или бронзовая, то f =0,05.

Из вышеуказанных условий равновесия определим минимально необходимые значения контактного давления

p min =F/(pdlf), р min =2T/(pd 2 lf).

Если осевая сила F и крутящий момент Т действуют одновременно, то расчет ведут по равнодействующей R осевой и окружной силы

F t =2T/d, т.е. ,

p min =R /(pdlf ).

Для технической практики особо важна прессовая посадка толстостенной втулки (ступицы) на сплошной вал. В этом случае предельный наибольший натяг N пред можно определить из условия прочности втулки по выводимой в сопротивлении материалов формуле

N пред =d/E,

где – допускаемое напряжение для втулки; Е – модуль упругости первого рода; d – диаметр контактной поверхности.

В процессе изготовления машин некоторые их детали соединяют между собой, при этом образуются неразъёмные или разъёмные соединения.

Неразъёмными называют соединения, которые невозможно разобрать без нарушения или повреждения деталей. К ним относятся заклёпочные, сварные, клеевые соединения, соединения, полученные пайкой, а также условно посадки с натягом.

Разъёмными называют соединения, которые можно разбирать и вновь собирать без повреждения деталей. К разъёмным относятся резьбовые, шпоночные, шлицевые и другие соединения.

Сварные соединения образуются путём местного нагрева деталей в зоне сварки. Наибольшее распространение получили электрические виды, основными из которых являются дуговая и контактная сварка.

Различают следующие разновидности дуговой сварки :

  • автоматическая сварка под флюсом (этот вид сварки высокопроизводителен и экономичен, даёт хорошее качество шва, применяется в крупносерийном и массовом производстве для конструкций с длинными швами);
  • полуавтоматическая сварка под флюсом (применяется для конструкций с короткими прерывистыми швами);
  • ручная сварка (применяется в тех случаях, когда другие виды дуговой сварки нерациональны, этот вид сварки малопроизводителен, качество шва зависит от квалификации сварщика).

Контактная сварка применяется в серийном и массовом производстве для нахлёсточных соединений тонкого листового металла (точечная, шовная контактные сварки) или для стыковых соединений круглого и полосового металла (стыковая контактная сварка).

Достоинства сварных соединений :

  • невысокая стоимость соединения благодаря малой трудоёмкости сварки и простоте конструкции сварного шва;
  • сравнительно небольшая масса конструкции (на 15-25% меньше массы клёпаной):
    • из-за отсутствия отверстий под заклёпки требуется меньшая площадь свариваемых деталей;
    • соединение деталей может выполняться без накладок;
    • отсутствуют выступающие массивные головки заклёпок;
  • герметичность и плотность соединения;
  • возможность автоматизации процесса сварки;
  • возможность сварки толстых профилей.

Недостатки сварных соединений :

  • прочность сварного шва зависит от квалификации сварщика (устраняется применением автоматической сварки);
  • коробление деталей из-за неравномерности нагрева в процессе сварки;
  • недостаточная надёжность при значительных вибрационных и ударных нагрузках.

Соединения с натягом осуществляются подбором соответствующих посадок, в которых натяг создаётся необходимой разностью посадочных размеров насаживаемых одна на другую деталей. Взаимная неподвижность соединяемых деталей обеспечивается силами трения, возникающими на поверхности контакта деталей.

Соединения деталей с натягом условно относят к неразъёмным соединениям, хотя, особенно при закалённых поверхностях, они допускают разборку и новую сборку деталей. Для этого используют:

  • механическое сопряжение;
  • тепловые посадки;
  • охлаждение охватываемой детали.

Достоинства соединений с натягом :

  • простота конструкции и хорошее базирование соединяемых деталей;
  • большая нагрузочная способность.

Недостатки соединений с натягом :

  • сложность сборки и, особенно, разборки;
  • рассеивание прочности соединения в связи с колебаниями действительных посадочных размеров в пределах допусков.

Резьбовые соединения являются наиболее распространёнными разъёмными соединениями. Их образуют болты, винты, шпильки, гайки и другие детали, снабжённые резьбой.

Резьбы классифицируют в зависимости от:

  • формы поверхности, на которой образуется резьба:
    • цилиндрические;
    • конические;
  • формы профиля резьбы:
    • треугольные;
    • упорные;
    • трапецеидальные;
    • прямоугольные;
    • круглые;
  • направления винтовой линии резьбы:
    • правые (винтовая линия поднимается слева вверх направо);
    • левые (имеют ограниченное применение);
  • числа заходов резьбы (определяется с торца винта по числу сбегающих витков):
    • однозаходные;
    • многозаходные;
  • назначения резьбы:
    • крепёжные (применяют в резьбовых соединениях; имеют треугольный профиль, который характеризуется большим трением, предохраняющим резьбу от самоотвинчивания, а также высокой прочностью и технологичностью);
    • крепёжно-уплотняющие (применяют в соединениях, требующих герметичности; выполняют треугольного профиля, но без радиальных зазоров; как правило, все крепёжные резьбовые детали имеют однозаходную резьбу);
    • для передачи движения (применяют в винтовых механизмах; имеют трапецеидальный (реже – прямоугольный) профиль, который характеризуется меньшим трением).

Достоинства резьбовых соединений :

  • высокая нагрузочная способность и надёжность;
  • наличие большой номенклатуры резьбовых деталей для различных условий работы;
  • удобство сборки и разборки;
  • малая стоимость, обусловленная стандартизацией и высокопроизводительными процессами изготовления.

Недостатки резьбовых соединений :

  • наличие большого количества концентраторов напряжений, которые снижают сопротивление усталости при переменных напряжениях.

Шпоночные соединения состоят из вала, шпонки и ступицы охватывающей детали.

Шпонка представляет собой брус, вставляемый в пазы вала и ступицы, для передачи вращающего момента между валом и охватывающей деталью.

Шпоночные соединения подразделяют на:

Рисунок 1 – Соединения призматическими шпонками

Рисунок 2 – Соединение сегментной шпонкой: 1 – винт установочный; 2 – кольцо замковое пружинное

Рисунок 3 – Соединение клиновой шпонкой

Рисунок 4 – Соединение тангенциальными шпонками

Достоинства шпоночных соединений :

  • простота конструкции;
  • сравнительная лёгкость монтажа и демонтажа.

Недостатки шпоночных соединений :

  • шпоночный паз ослабляет вал и ступицу охватывающей детали не только уменьшением сечения, но, главное, значительной концентрацией напряжений изгиба и кручения;
  • трудоёмкость изготовления.

Шлицевые соединения образуются выступами – зубьями на валу и соответствующими впадинами – шлицами в ступице охватывающей детали. Рабочими являются боковые стороны зубьев. Упрощенно шлицевые соединения можно рассматривать как многошпоночные.

Шлицевые соединения различают :

Рисунок 5 – Прямобочное шлицевое соединение

Рисунок 6 – Эвольвентное шлицевое соединение

Рисунок 7 – Треугольное шлицевое соединение

Достоинства шлицевых соединений

  • обеспечивают лучшее базирование соединяемых деталей и более точное направление при осевом перемещении;
  • уменьшается число деталей соединения (шлицевое соединение образуют две детали, шпоночное – три-четыре);
  • при одинаковых габаритах допускают передачу больших вращающих моментов за счёт большей поверхности контакта;
  • обеспечивается высокая надёжность при динамических и реверсивных нагрузках;
  • вал зубьями ослабляется незначительно;
  • уменьшается длина ступицы.

Недостатки шлицевых соединений (по сравнению со шпоночными соединениями):

  • более сложная технология изготовления;
  • более высокая стоимость.

Перечень ссылок

  1. Куклин Н.Г., Куклина Г.С. Детали машин: Учебник для машиностроительных специальностей техникумов. – 4-е издание, переработанное и дополненное. – М.: Высшая школа, 1987. – 383 с., ил.

Вопросы для контроля

  1. Какие существуют основные разновидности соединений?
  2. Какие существуют разновидности сварных соединений?
  3. Каковы достоинства и недостатки сварных соединений?
  4. Какие существуют способы сборки и разборки соединений с натягом?
  5. Каковы достоинства и недостатки соединений с натягом?
  6. Какие существуют разновидности резьбовых соединений?
  7. Каковы достоинства и недостатки резьбовых соединений?
  8. Какие существуют разновидности шпоночных соединений?
  9. Каковы достоинства и недостатки шпоночных соединений?
  10. Какие существуют разновидности шлицевых соединений?
  11. Каковы достоинства и недостатки шлицевых соединений?
<

БЕЛОРУССКИЙ ГОСУДРАСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра инженерной графики

РЕФЕРАТ

На тему:

«Неразъемные соединения»

МИНСК, 2008

Неразъемные соединения

Неразъемным называют такое соединение деталей и узлов, разборка которого невозможна без повреждения деталей. Часто неразъемные соединения используют для получения деталей сложной формы и геометрии из простых дешевых элементов. К неразъемным относят сварные, паяные, заклепочные, клеевые и формовочные соединения.

Сварные соединения

Сваркой называют процесс соединения металлических и пластмассовых деталей путем установления межатомных связей между соединяемыми частями при местном нагреве, пластической деформации или одновременном действии того и другого.

Различают термическую, термомеханическую и механическую сварки. Наиболее распространенными видами сварки являются электродуговая, электронно-лучевая, газовая (термические); контактная и термокомпрессионная (термомеханические); трением, холодная и ультразвуковая (механические).

При электродуговой сварке (рис. 1, а) электрической дугой в месте контакта электрода 2 и соединяемых деталей 1 расплавляется металл деталей и электрода и образуется прочный шов. Защитная обмазка металлического электрода образует при сварке большое количество шлака и газа, которые обеспечивают устойчивое горение дуги и защищают расплавленный металл от окисления. В месте сварки сильно окисляющихся при нагреве алюминиевых и магниевых сплавов, сплавов титана, высоколегированных сталей электрическую дугу окружают слоем инертного газа, аргона или гелия, что сильно удорожает сварку.

б
а

При газовой сварке для нагрева и плавления металлов используют теплоту газового пламени при сжигании ацетилена в кислороде. Такую сварку часто применяют для тонкостенных и легко окисляющихся деталей из металлов, обладающих различными температурами плавления, в частности, для сварки деталей из конструкционных сталей толщиной до 2 мм, меди – до 4 мм. Газовая сварка вызывает небольшие деформации и структурные изменения.

Электронно-лучевую (лазерную) сварку производят потоком электронов (частиц света) большой энергии. Этим способом обычно сваривают тугоплавкие и сильно окисляющиеся металлы и сплавы. Сварку производят в вакууме или в атмосфере аргона.

Контактная сварка – самый производительный способ сварки в массовом производстве. Различают точечную, стыковую и роликовую (шовную) контактные сварки. При точечной сварке (рис. 1, б) тонкостенные детали соединяют внахлестку. Под действием давления электродов, проводящих ток к месту сварки, образуются точечные сварные соединения. Так как высокие температуры действуют на небольших участках (точках), отсутствует коробление соединяемых деталей. Точечную сварку используют при изготовлении кожухов, панелей, шасси, стоек и других деталей.

При стыковой сварке (рис. 1, в) соединяемые детали сжимают и в зоне контакта при прохождении электрического тока выделяется большое количество теплоты. Стыковой сваркой соединяют детали различных форм и сечений (круг, квадрат, труба, уголок и т.д.).

Шовную сварку (рис. 1, г) осуществляют вращающимися дисковыми электродами. При этом получается непрерывный сварной шов, обеспечивающий герметичное соединение тонкостенных деталей.

Разновидностью контактной сварки является конденсаторная – ток к месту сварки подается в виде короткого импульса при разряде конденсаторов. Контактная сварка позволяет сваривать разнородные материалы, детали малых толщин и сечений (сварка в «шарик» монтажных приводов) и детали различных сечений.

Термокомпрессионная сварка – это сварка под давлением с местным нагревом участка соединения за счет теплопередачи от нагретого электрода. Применяется для присоединения металлических проводников толщиной в десятки микрон к полупроводниковым кристаллам, к напыленным пленкам, т.е. при монтаже элементов микросхем.

При сварке трением нагрев в месте соединения осуществляется за счет теплоты, выделяемой в месте контакта прижатых друг к другу и вращающихся по отношению друг к другу деталей.

Холодная сварка осуществляется без нагрева соединяемых деталей за счет их сжатия с помощью механических и гидравлических прессов до появления пластических деформаций. Холодной сваркой сваривают металлы с хорошими пластическими свойствами – алюминий и его сплавы, медь и ее некоторые сплавы; никель; олово; серебро; разнородные металлы, например, алюминий и медь. Для получения прочных и плотных швов необходимо предварительно очистить поверхности контакта от окислов. Прочность соединения при точечной холодной сварке может быть выше, чем при точечной контактной сварке, но при этом значительно хуже внешний вид соединения из-за вмятин и пластической деформации.

Ультразвуковая сварка основана на создании в месте соединения деталей переменных напряжений сдвига с частотой ультразвуковых генераторов, преобразующих колебания электрических величин в механические колебания. Ультразвуковая сварка позволяет сваривать металлы с различными, в том числе неметаллическими покрытиями, пластмассы.

В зависимости от выбранного вида сварки и требований, предъявляемых к соединению, применяют различные виды соединений. В зависимости от взаимного расположения соединяемых элементов различают следующие виды сварных соединений: стыковые (рис. 2, а), нахлесточные (рис. 2, б), угловые (рис. 2, в) и тавровые (рис. 2, г). Форму кромок и размеры поперечного сечения стыковых швов определяют в зависимости от толщины свариваемых деталей и способа сварки. Угловые швы в поперечном сечении имеют форму прямоугольного треугольника. В зависимости от расположения по отношению к направлению нагрузки сварные швы делят на лобовые – шов перпендикулярен направлению нагрузки (рис. 2, д), фланговые – шов параллелен направлению нагрузки (рис. 2, е), косые и комбинированные (рис. 2, ж).

д
б
а
Рис. 2
ж
е
г
в

Достоинствами сварных соединений являются высокая производительность, равнопрочность, герметичность, возможность соединения различных материалов и деталей разных форм.

Недостатки сварных соединений: появление остаточных напряжений в местах сварки за счет локального нагрева, что может привести к деформации свариваемых деталей; недостаточная вибрационная и ударная прочность; необходимость проведения термической обработки для снятия остаточных напряжений; сложность контроля дефектов и качества соединения.

Сварные соединения обозначают (рис. 2, д, е, ж) прямой линией, оканчивающейся стрелкой, направленной к сварному шву. Линия соединена с полкой, над которой указывают параметры сварного шва. Если лицевая сторона сварного шва не видна, обозначение параметров помещают под полкой. Свойства сварного соединения определяются свойствами материалов или их сочетаний, включая покрытия соединяемых деталей; видом и технологическими параметрами сварки; формой и размерами шва.

Свойство материалов образовывать сварные соединения, отвечающие требованиям конструкции и условиям эксплуатации, оценивается свариваемостью. Из материалов и их сплавов свариваются хорошо, без применения особых методов малоуглеродистые конструкционные и низколегированные стали (Ст0…Ст3, 08…25, 15Х, 15Г и др.), алюминий и его сплавы (Д1, Д16, АМц, АМг3, АЛ2, АЛ4), медь и ее сплавы (М3, ЛС59-1, Л63, БрАЖ9-4, БрОФ10-1, БрОЦ4-3 и др.); свариваются ограниченно только специальными методами или при определенных режимах сварки среднеуглеродистые стали (30 … 45, 30Г, 30ХГС и др.); свариваются плохо высокоуглеродистые и высоколегированные стали 65Г, У8, У10, чугуны.

Из неметаллических материалов сварке подвергаются только термопластические пластмассы (полиэтилен, полистирол, полипропилен и др.), при этом кромки деталей разогреваются до пластического вязкотекучего состояния, а затем подвергаются сжатию. В качестве присадочного материала применяют пруток из той же пластмассы, что и свариваемые детали. Известны следующие способы сварки пластмасс: ультразвуком, токами высокой частоты, трением, газовыми теплоносителями и нагретыми инструментами.

Соединения пайкой

Пайкой называют процесс соединения металлических или металлизированных деталей с помощью дополнительного связующего материала – припоя, температура плавления которого ниже температуры плавления материала соединяемых деталей.

В расплавленном состоянии припой смачивает поверхности соединяемых деталей. Соединение происходит путем межатомного сцепления, растворения и диффузии материала деталей и припоя.

В отличие от сварки пайка сохраняет неизменными структуру, механические свойства и состав материала деталей, вызывает значительно меньшие остаточные напряжения. Прочность паяного соединения определяется прочностью припоя и сцепления припоя с поверхностями соединяемых деталей.

В качестве припоя применяют как чистые металлы, так и сплавы. В зависимости от температуры плавления припои бывают легкоплавкие (мягкие) и среднетугоплавкие (твердые). К легкоплавким мягким припоям с температурой плавления до 450 °С относятся оловянисто-свинцовые сплавы с содержанием олова от 18 до 90%, например ПОС-61 (61% олова). Для понижения температуры плавления в эти сплавы вводят висмут и кадмий, а для увеличения прочности – сурьму. Твердые припои содержат в своем составе медь, цинк, никель, серебро и имеют температуру плавления выше 500 °С.

Мягкие припои применяют для получения главным образом надежных электрических контактов при пайке и герметичных соединений.

Твердые припои обеспечивают достаточную прочность шва при температуре свыше 100 °С, устойчивы к вибрациям, ударам и агрессивным средам.

Хорошее соединение пайкой можно получить только при чистых поверхностях спаиваемых деталей, свободных от окислов и загрязнений и при заполнении зазора между деталями припоем. Для очистки и защиты соединяемых поверхностей и припоя от окисления, улучшения смачиваемости и лучшего растекания припоя применяют флюсы. Они способствуют очищению поверхностей от загрязнений, растворяют окисные пленки, улучшают смачиваемость поверхностей припоем, обеспечивают лучшее затекание припоя в зазоры между спаиваемыми деталями. Флюсы должны обладать хорошей жидкотекучестью и иметь температуру плавления более низкую, чем у припоя, что обеспечивает их вытеснение припоем. Они делятся на химически активные (бура, хлористый цинк и др.) и химически неактивные (канифоль и спиртовые растворы). Применение первых требует тщательной промывки деталей после пайки.

Соединения пайкой могут выполняться при различных способах нагрева деталей и припоя. Наиболее распространенными видами пайки являются пайка паяльником, газовой горелкой, в печи, индукционная, пайка в жидких средах, ультразвуковая, волной припоя, лазером, электронным лучом и другие. Способ нагрева зависит от конструкции соединения, материала соединяемых деталей, требуемого количества теплоты и температуры нагрева. Качество соединения определяется величиной зазора и плотностью его заполнения припоем, прочностью припоя и прочностью связи припоя с поверхностями соединяемых деталей.

Достоинствами пайки являются простота и дешевизна технологического процесса, широкие возможности его механизации и автоматизации, возможность соединения всех металлов и разнородных материалов (металл с керамикой, стеклом, резиной), малые остаточные температурные напряжения и деформации, малое электросопротивление мест соединения. Так как непосредственная пайка при соединении металлов с неметаллами невозможна, то на поверхности неметаллических материалов создают промежуточный слой из меди, никеля, серебра, который хорошо сцепляется с поверхностью этих материалов и обеспечивает качественную пайку с металлом.

Недостатком соединений пайкой является их невысокая механическая и термическая прочность.

Различают паяные соединения внахлестку и встык. Наибольшую прочность имеет соединение внахлестку, но при этом увеличиваются габариты соединения. Соединение встык имеет малые габариты, но невысокую прочность.

Заклепочные соединения

Заклепочные соединения выполняют с помощью специальных крепежных деталей – заклепок (рис. 3, а, б) или непосредственным расклепыванием цапф деталей (рис. 3, в, г).

Заклепка представляет собой цилиндрический стержень с двумя головками, одна из которых, называемая закладной, выполнена заранее, а вторая, замыкающая, получается в процессе сборки под ударами инструмента. Соединяемые детали при этом сильно сжимаются.

в
б
а
г

Форма и размеры заклепок стандартизированы. Стержень заклепки может быть сплошным или полым; головки по форме бывают полукруглые (рис. 4, а), потайные (рис. 4, б), полупотайные (рис. 4, в), плоские (рис. 4, г). Заклепки изготавливают из пластичных материалов: низкоуглеродистых сталей (Ст2, Ст3, 08, 10), меди (М1), латуни (Л62), алюминиевых сплавов. Материал соединяемых деталей может быть тверже или мягче материала заклепок. Желательно, чтобы коэффициенты линейного расширения заклепок и соединяемых деталей были равными или близкими друг другу. В противном случае при изменении температуры возникнут дополнительные напряжения, что снизит прочность соединения. Диаметр d (см. рис. 4, а) заклепки принимают примерно в 1,8 … 2,0 раза больше минимальной толщины соединяемых деталей. Стержень заклепки должен выступать над соединяемыми деталями на величину примерно 1,5d для образования замыкающей головки. Для обеспечения лучшей механической прочности и предотвращения концентрации напряжений при посадке и клепке заклепки рекомендуют минимальный зазор между заклепкой и стенками отверстия. Диаметр отверстия под заклепку принимают на 0,2 … 0,5 мм больше диаметра заклепки.

в
б
а
е
д
г

Заклепочные соединения применяют для соединения трудносвариваемых металлов и разнородных материалов; в конструкциях, подверженных действию вибрационных и ударных нагрузок; для соединения металлических деталей с неметаллическими.

Выбор формы заклепки зависит от материала и толщины соединяемых деталей.

Стальные заклепки применяют для прочных соединений, а латунные и алюминиевые – для соединений, не требующих большой механической прочности. Для соединения деталей, изготовленных из хрупких или неметаллических материалов, используют полупустотелые и пустотелые заклепки (рис. 4, д, е).

Заклепки с полукруглой головкой – самые распространенные и применяются везде, где допустима выступающая головка. Применение заклепок с потайной головкой целесообразно для деталей из прочных материалов при толщине более 2 … 2,5 мм. При меньшей толщине берут заклепки с полупотайной головкой. Для соединения мягких и эластичных материалов (винипласт, резина) необходимы большие площади головки, поэтому под заклепки ставят шайбы, прокладки. Клепка и развальцовка заклепок не должны сильно деформировать соединяемые детали.

Заклепочные соединения выполняют внахлестку (рис. 5, а) или встык с одной (рис. 5, б) или двумя (рис. 5, в) накладками и расположением заклепок в один, два или более параллельных (рис. 5 г) или шахматных ряда.

г
в
б
а

Шаги между заклепками выбираются исходя из назначения соединения и удобства клепки: t = (2 … 8)d, ℓ = (1,35 … 2)d, m = (1,5 … 2)d. Заклепки рассчитывают на сдвиг по поперечным сечениям и на смятие по боковым поверхностям, а листы – на растяжение по ослабленным отверстиями под заклепки сечениям.

Достоинствами заклепочных соединений являются возможность соединения различных материалов, хорошая сопротивляемость вибрационным и ударным нагрузкам, удобство и надежность контроля качества соединения. К недостаткам относятся трудоемкость (разметка, сверление отверстий, закладка и клепка заклепок) и высокая стоимость; ослабление соединяемых деталей отверстиями; дополнительный расход материала на накладки.

Клеевые соединения

Склеиванием называют соединение деталей тонким слоем быстротвердеющего раствора – клея. Процесс склеивания состоит из подготовки соединяемых поверхностей деталей, нанесения клея, соединения деталей и выдержки при определенных давлении и температуре.

Клеевые соединения применяют для скрепления деталей из различных металлических и неметаллических (стекло, керамика, пластмасса) материалов в любом их сочетании. К клеевым соединениям не предъявляют требований высокой прочности, но они должны хорошо сопротивляться вибрациям, воздействию влаги, колебаниям температур. Соединения бывают чисто клеевые и клеемеханические, для повышения герметичности (клеерезьбовые, клеесварные). Клеевые соединения улучшают герметизацию, снижают стоимость изделия и позволяют проще решать задачи миниатюризации конструкций. Их часто применяют в тех случаях, когда невозможно механическое крепление соединяемых деталей, например, склеивание оптического стекла с помощью прозрачных и неокрашенных клеев, крепление полупроводникового кристалла с кристаллодержателем.

Прочность клеевого соединения зависит от способа подготовки поверхностей. Желательно, чтобы они были шероховатые. Для этого применяют механическую (абразивную) и химическую (травление в растворах) обработку. Клеевой слой для повышения прочности должен быть по возможности тонок (0,05 … 0,25 мм), тепло- и влагостойким, не подвергаться старению. Для обеспечения необходимого взаиморасположения склеиваемых деталей в конструкции предусматривают фиксирующие элементы – выступы, впадины и т.п.

Клеи подбирают исходя из свойств материала соединяемых поверхностей. Клеи делят на твердеющие при удалении растворителя, твердеющие при охлаждении расплава и твердеющие за счет химических процессов.

Процесс склеивания клеями первой группы сводится к нанесению на поверхность деталей раствора клея, сдавливанию деталей и последующему удалению растворителя путем испарения или впитывания в склеиваемый материал. Соединение обладает свойством обратимости, его не применяют для изделий, работающих в условиях повышенной влажности и температуры. К таким клеям относят резиновые, казеиновые и другие виды клеев.

Клеи второй группы перед нанесением разжижают нагреванием, затем наносят на поверхности, которые сдавливают и выдерживают при комнатной температуре. Эти клеи также обратимы, т.е. при нагревании становятся вязкими, и соединения разрушаются.

Клеи третьей группы необратимы, полученное с их помощью соединение обладает большой прочностью, однако процесс склеивания бывает сложным, некоторые клеи твердеют при нагревании соединения. К таким клеям относят синтетические клеи серий БФ, «Момент», клеи на эпоксидной, эпоксидно-кремнийорганической основе и др.

Клеевое соединение лучше работает на сдвиг, хуже – на отрыв. Его прочность зависит от сорта клея, толщины и качества слоя, прочности сцепления клея с поверхностями соединяемых деталей.

Соединения заформовкой и запрессовкой

Заформовка заключается в соединении металлических элементов (арматуры) со стеклом, пластмассами, резиной, легкоплавкими цинковыми, алюминиевыми и магниевыми сплавами путем погружения этих элементов в формуемый материал, находящийся в вязкотекучем пластичном или жидком состоянии. После застывания формуемого материала образуется неразъемное соединение.

Таким способом получают различные рукоятки (рис. 6), крышки, клеммовые держатели, детали для электроизмерительных, оптико-механических и электронных приборов. Заформовка является единственным способом получения газонепроницаемого соединения металлических электродов со стеклянными баллонами электровакуумных устройств.

Соединения заформовкой имеют следующие достоинства: не требуются высокие точность и чистота обработки погружаемых частей арматуры; можно получить необходимые, часто не совместимые местные свойства элементов узла – электро- и теплопроводность арматуры при сохранении изоляционных свойств узла; уменьшаются масса изделий и расход металла, стоимость.

При заформовке практически отсутствует сцепление арматуры с формуемым материалом. Прочность и плотность соединений обеспечивают выбором соответствующих форм погружаемой арматуры в виде кольцевых проточек, впадин, уступов, уширений, загибов (см. рис. 6), увеличивающих поверхности контакта и препятствующих ее выдергиванию.

Соединения запрессовкой получают путем создания гарантированного натяга между охватываемой и охватывающей поверхностями при сборке. После сборки вследствие упругих и пластических деформаций на поверхности контакта возникает удельное давление и соответствующие ему силы трения, препятствующие взаимному смещению деталей.

Сборка при соединении запрессовкой может осуществляться одним из трех способов: прессование без нагрева, с нагревом втулки или с охлаждением вала. Наиболее распространены соединения запрессовкой по цилиндрическим поверхностям. Они применяются для соединения зубчатых колес на валиках, при соединении зубчатого венца червячного колеса со ступицей. Для облегчения сборки на деталях выполняют направляющие фаски. Сборка с нагревом втулки может вызвать изменение структуры, коробление детали. Предпочтительнее сборка с охлаждением вала. Для охлаждения используют жидкий азот (–196 °С), сухой лед (–72 °С).

При малых размерах соединяемых деталей часто используют запрессовку на валик с накаткой, что значительно уменьшает стоимость соединения за счет снижения точности изготовления соединяемых поверхностей. На валу накатывают треугольные выступы (шлицы), при этом часть материала вала выдавливается инструментом и первоначальный диаметр вала увеличивается. Прочность соединения зависит от глубины вдавливания накатанных зубцов в цилиндрическую поверхность сопряженной детали. В процессе запрессовки материал втулки деформируется и заполняет впадины вала. Соединение с накаткой применяют для сборки стальных или латунных валиков с алюминиевыми или пластмассовыми деталями. Этот вид соединения хуже прессовых центрирует детали, но при этом не требуются высокие точность и чистота обработки поверхностей, упрощается сборка.

Чем больше натяг и параметры шероховатости поверхности, тем выше надежность соединения. К соединениям с гарантированным натягом относятся соединения с применением посадок H7/u7; H7/r6; Н7/p6 и др. Выбор необходимой посадки осуществляют из условий прочности по величине удельного давления.

Достоинствами соединений запрессовкой являются: отсутствие дополнительных креплений, простота конструкции, хорошая центровка сопрягаемых деталей, возможность передачи значительных осевых усилий и крутящих моментов. К недостаткам соединений относятся: высокие точность и стоимость изготовления соединяемых деталей, сложность сборки, влияние величины натяга, коэффициента трения и рабочих температур на прочность соединения.


ЛИТЕРАТУРА

1 Красковский Е.Я., Дружинин Ю.А., Филатова Е.М. Расчет и конструирование механизмов приборов и вычислительных систем: Учебное пособие. М.: – Высш. шк., 2001. – 480 с. 2001

2 Сурин В.М. Техническая механика: Учебное пособие. – Мн.: БГУИР, 2004. – 292 с. 2004

3 Ванторин В.Д. Механизмы приборных и вычислительных систем: Учебное пособие. – М.: Высш. шк., 1999. – 415 с.

НЕРАЗЪЕМНЫЕ СОЕДИНЕНИЯ

П л а н л е к ц и и

1. Общие сведения.

2. Сварные соединения.

3. Заклепочные соединения.

4. Клеевые и паяные соединения.

5. Соединение деталей с гарантированным натягом.

1. Общие сведения

Изготовляемые промышленностью машины, станки, приборы и аппараты, как правило, состоят из различных, определенным образом объединенных и взаимно связанных деталей, которые соединяются между собой различными способами. Соединение деталей обеспечивает их определенное взаимное положение в процессе работы. К неразъемным относят соединения деталей с жесткой механической связью, сохраняющейся в течение всего срока их службы. Разборка таких соединений невозможна без разрушений или повреждений самих деталей или связывающих их элементов. К неразъемным соединениям можно отнести соединения деталей сваркой, заклепками, пайкой и натягом.

2. Сварные соединения

Сварка как высокопроизводительный процесс изготовления неразъемных соединений находит широкое применение. Использование сварных конструкций вместо клепаных дает экономию металла до 15–20 % (более полно используется рабочее сечение, возможно непосредственное соединение). В результате уменьшения массы детали, трудоемкости изготовления, возможности автоматизации производства уменьшается стоимость изготовления детали.

Применение сварных деталей вместо литых обеспечивает экономию металлов до 30 % (чугунных – до 50–60 %), уменьшение припусков на механическую обработку и снижение стоимости изготовления деталей (стоимость проката почти в 2 раза меньше).

Основными недостатками сварных соединений является недостаточная стабильность качества шва (возможны непровары, пережоги), что снижает прочность сварных швов, особенно при переменных нагрузках. Качество шва повышается при использовании автоматической сварки.

Благодаря своим преимуществам сварка вытеснила заклепочные соединения из их традиционных областей применения (корпуса судов, котлы, резервуары, мосты, пространственные металлоконструкции, подъемно-транс- портные машины и др.) и позволила создать принципиально новые конструк-

ции (штампосварные конструкции, заменяющие фасонное литье и клепаные конструкции, и т. д.).

Сварным соединением называется неразъемное соединение, состоящее из двух деталей и соединяющего их сварного шва.

Основные типы, конструктивные элементы и размеры сварных соединений устанавливает ГОСТ 5254–80. По взаимному расположению сварные соединения делятся на стыковые – условное обозначение С, нахлесточные – Н, тавровые – Т и угловые – У.

Первые три вида сварных соединений используют как силовые, четвертый – как вспомогательный и при передаче малых нагрузок.

Находят также применение соединения с накладками, пробочные и прорезные.

Стыковые сварные соединения (рис. 17.1) – типичные сварные соединения, в которых торцы или кромки соединяемых деталей располагаются так, что поверхность одной детали является продолжением поверхности другой детали.

Стыковые соединения без скоса кромок применяют при соединении свариваемых листов толщиной S до 12 мм. Листы толщиной до 4 мм сваривают односторонним швом, толщиной 2–12 мм – двусторонним швом. Стыковые соединения с V-образной разделкой кромок применяют при сварке металла толщиной 3–60 мм. При толщине металла 15–100 мм применяют V-образную разделку шва с криволинейным скосом одной или обеих кромок. Стыковые соединения с Х- и К-образной разделкой кромок применяют при сварке металла толщиной 8–175 мм. Превышение шва l ш над основным металлом допускается не более 1–1,5 мм во избежание повышенной концентрации напряжений. При этом расход электродного металла, а следовательно, и электроэнергии почти вдвое меньше, чем при V-образной разделке кромок.

Соединение встык имеет высокую прочность при статических и динамических нагрузках F . Его рационально применять для соединения листового металла, а также при стыковании уголковых профилей, швеллеров и двутавровых балок.

Нахлесточные сварные соединения (рис. 17.2) широко применяют при изготовлении различных строительных конструкций – колонн, мачт, ферм и др. Один элемент соединения накладывается на другой. Величина перекрытия должна быть не менее удвоенной суммы толщин свариваемых кромок изделия. Листы при сварке заваривают с обеих сторон, чтобы не допустить проникновения влаги в зазор между свариваемыми листами.

Тавровые сварные соединения (рис. 17.3) – это соединения, при кото-

рых торец одного элемента примыкает к поверхности другого элемента свариваемой конструкции под некоторым углом (чаще всего под прямым).

l ш1

l ш2

При малых толщинах свариваемого элемента, а также при ручной сварке подготовка кромок не проводится. Односторонняя подготовка кромок осуществляется при толщине листа S = 4–26 мм, двухсторонняя – при S = 12–60 мм. Для получения прочного шва зазор между свариваемыми элементами составляет 2–3 мм.

Угловые сварные соединения (рис. 17.4) при малых толщинах

(S = 2–8 мм) выполняют ручной сваркой, при средних толщинах (S = 6–14 мм) – полуавтоматической сваркой, при значительных толщинах (S = 10–40 мм) – автоматической и полуавтоматической сваркой.

Сварные швы классифицируют по ряду признаков:

по положению относительно действующей силы: фланговый (рис. 17.5, а ),

лобовой (рис. 17.5, б ), косой (рис. 17.5, в );

по положению в пространстве: нижний (рис. 17.6, а ), горизонтальный

(рис. 17.6, б ), вертикальный (рис. 17.6, в ), потолочный (рис. 17.6, г );

по внешней форме: выпуклый (рис. 17.7, а ), нормальный (рис. 17.7, б ),

вогнутый (рис. 17.7, в ); по протяженности: непрерывистый (рис. 17.8, а ), прерывистый

(рис. 17.8, б ).

Выпуклые швы имеют большее сечение и поэтому называются усиленными . Однако большая выпуклость для швов, работающих при знакопеременных нагрузках, вредна, так как вызывает концентрацию напряжений в местах перехода от шва к поверхности основной детали. Вогнутые ослабленные швы применяют, как правило, в угловых соединениях, в стыковых соединениях они не допускаются. Нормальный шов по сечению соответствует расчетному и принят как основной вид сварного шва.

Прерывистые швы применяют в том случае, если шов неответственный (сварка ограждений, настила и др.) или если по прочностному расчету не требуется сплошной шов. Их применяют в целях экономии материалов, электроэнергии и трудозатрат. Длину провариваемых участков l прерывистого шва принимают 50–150 мм, а промежутки делают примерно вдвое больше. Расстояние от начала предыдущего шва до начала последующего шва называют шагом шва t .

Угловые швы (на рис. 17.2–17.4 выделены тонкими линиями), называемые также валиковыми , – это швы угловых, тавровых и нахлесточных соединений. Условное обозначение шва наносят на полке линии-выноски, проведенной от изображения шва с лицевой стороны, и под полкой линиивыноски, проведенной от изображения шва с оборотной стороны в соответствии с ГОСТ 2.312–72.

Катет валикового шва K (рис. 17.2), как правило, принимается равным толщине соединяемых деталей (уголки, швеллеры, двутавры), но не менее 3 мм. Максимальная величина катета ограничивается значением 20 мм.

Минимальная длина валиковых швов должна быть не менее 30 мм, так как при меньшей длине резко возрастает влияние непровара в начале и в конце шва. Во фланговых швах по длине шва возникает концентрация напряжений: тем большая, чем длиннее шов. Длину фланговых швов рекомендуется принимать не больше (50–60)K .

Оценка работоспособности сварных швов. Общим условием работо-

способности сварных соединений является равнопрочность сварного шва и соединяемых элементов.

Прочность стыкового сварного шва оценивается по величине нормальных напряжений среды ср , Н/мм2 , при действии растягивающих сил F , Н, и изгибающих моментов M , Н · м:

lш S

где l ш – длина шва, мм; S – толщина листа, мм; W ш – момент сопротивления сварного шва, мм3 ; – допускаемое напряжение материала сварного шва, Н/мм2 .

Расчет валиковых швов всех типов унифицирован и проводится условно по касательным напряжениям среза ср в наиболее ослабленном сечении сварного шва по зависимости

τ ср

0, 7Kl

0, 7Kl 2

где 0,7K – расчетное значение катета шва, мм; – допускаемое напряжение среза материала сварного шва, Н/мм2 .

Допускаемые напряжения для сварного шва выбираются в зависимости от величины допускаемого напряжения для основного материала , путем понижения на величину коэффициента качества шва K ш :

K ш

K ш .

Значение коэффициента качества шва K ш берется по справочным данным в пределах 0,5–1, в зависимости от способа сварки, материала электрода и характера нагружения.

При проектировании сварных соединений определяется расчетная длина сварного шва.

Для стыкового соединения расчетная длина шва сравнивается с шириной соединяемых листов B , и если l > B , то сварной шов следует выполнить косым (рис. 17.5, в ) или усилить накладками с валиковыми швами.

Для валиковых швов при условии l > B длина шва может быть увеличена за счет введения кроме лобового (рис. 17.5, б ) еще и фланговых сварных швов (рис. 17.5, а ), т. е.

l = l л + l ф ,

где l л – длина лобового шва, мм; l ф – длина фланговых швов, мм.

3. Заклепочные соединения

Основным скрепляющим элементом заклепочных соединений является заклепка. Она представляет собой короткий цилиндрический стержень длиной L , диаметром d , на одном конце которого находится головка диаметром D , высотой Н , а для некоторых видов – с углом конуса (рис. 17.9).

Головки заклепок могут иметь сферическую, коническую или коническо-сферическую форму. В зависимости от этого различают головки

полукруглые (рис. 17.9, а ), потайные (рис. 17.9, б ), полупотайные (рис. 17.9, в )

и плоские (рис. 17.9, г ).

Достоинства заклепочных соединений в сравнении со сварными:

1. Стабильность качества соединения. Надежная работа при ударных

2. Надежный и простой визуальный контроль качества.

3. Возможность соединения деталей из несвариваемых или подверженных короблению материалов.

Недостатки заклепочных соединений:

1. Ослабление деталей отверстиями и в связи с этим повышенный расход металла.

2. Менее удобные конструктивные формы и трудность автоматизации процесса склепывания.

Технология выполнения заклепочного соединения схематично представлена на рис. 17.10.

В соединяемых деталях выполняют отверстия сверлением или другим способом. В сквозное отверстие соединяемых деталей вставляют до упора головной стержень заклепки, причем заклепка может быть в горячем или холодном виде. Свободный конец заклепки выходит за пределы детали примерно на l,5d . Его расклепывают ударами или сильным давлением и создают вторую головку.

Диаметр стержней заклепок выбирают по специальным таблицам, ориентировочно он принимается равным толщине соединяемых деталей. Длину стержня заклепки принимают также с учетом толщины соединяемых деталей и припуска. Ориентировочно она составляет 1,5d .

Заклепочные швы бывают однорядными и многорядными. Заклепки обычно располагаются в ряду на одинаковом расстоянии. Расположение заклепок в шве может быть рядовым и шахматным. Соединяемые детали в заклепочных соединениях располагают внахлестку или встык с накладками.

На чертежах указывают все конструктивные размеры швов клепаного соединения. При этом не вычерчивают все заклепки соединения: обычно показывают одну-две из них, а места расположения остальных обозначают пересечением осей (рис. 17.10).

Оценка работоспособности заклепочных соединений. Расчет закле-

почных соединений состоит в определении количества заклепок (расстояний между соседними заклепками и рядами заклепок) и их диаметра.

Работоспособность заклепочных соединений оценивается по величине напряжений среза стержня заклепки и смятия боковой поверхности (рис. 17.11). Заклепки необходимо располагать так, чтобы в них возникали только касательные напряжения среза. В этом случае условие прочности заклепки имеет вид

τ ср

[τ]ср

2 ZI

где F – срезающая сила, Н; d – диаметр заклепки, мм; Z – количество заклепок; I 2 .

Допускаемые напряжения ср и см выбираются в зависимости от материала заклепки: малоуглеродистые стали, дюралюминий, латунь, медь.

Диаметры стержней заклепок, шаг между ними, шаг между рядами выбирают в зависимости от толщины соединяемых деталей.

При проектировании заклепочных соединений по условиям прочности на срез и смятие определяют число заклепок Z , которое округляют до большего целого, а затем формируют расположение заклепок по рядам.

4. Клеевые и паяные соединения

Клеевые соединения применяют для соединения разнородных материалов. Конструкции их подобны паяным и сварным. Нагрузочная способность клеевых соединений зависит от толщины клея (оптимальная толщина – 0,005–0,15 мм). Существует большое разнообразие клеев. Основное применение находят клеи на основе органических полимерных смол.

Наиболее распространены клеевые соединения, работающие на срез. На растяжение клеевой слой работает хуже. Рассчитывают их аналогично сварным соединениям.

Размер длины нахлестки l , мм, можно определить из условия равнопрочности соединяемых деталей и клеевого слоя:

τср bl F τ ср ,

где F – действующее усилие, Н; b и l – длина и ширина нахлестки, мм;

[τ]cр – допускаемое напряжение среза материала шва; для клея БФ-2 [τ]cр = 15–20 МПа, для клея БФ-4 [τ]cр = 25–30 МПа.

Пайка в отличие от сварки осуществляется без расплавления соединяемых деталей: связь между ними обеспечивается силами молекулярного взаимодействия поверхностей детали с присадочным материалом (припоем).

Пайку используют для соединения как разнородных, так и однородных материалов. Процесс пайки легко поддается автоматизации.

При пайке применяют главным образом стыковые и нахлесточные соединения. Расчет прочности паевых соединений аналогичен расчету свар-

Статьи по теме: