Технологический процесс образования неразъемного соединения металлических деталей. Чертежи разъемных и неразъемных соединений деталей — Гипермаркет знаний. Паяные и клеевые соединения

Неразъёмное соединение

соединение с жёсткой механической связью деталей в каком-либо узле машины или конструкции, сохраняющееся в течение всего срока службы. При Н. с. разборка обычно невозможна без разрушения или повреждения поверхностей деталей. Основные виды Н. с.: заклёпочные, сварные, паяные, прессовые, клеевые, полученные вальцеванием, комбинированные (клеесварные и др.). Применение того или иного вида Н. с. обусловлено требованиями изготовления, сборки, эксплуатации машин и экономическими соображениями.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Неразъёмное соединение" в других словарях:

    неразъёмное соединение - — Тематики нефтегазовая промышленность EN permanent connection …

    Соединение деталей, при к ром разборка узла возможна лишь при разрушении крепления или самих деталей. К Н. с. относятся заклёпочные, сварные, клеевые соединения … Большой энциклопедический политехнический словарь

    Соединение сварное - – неразъемное соединение, выполненное сваркой. [ГОСТ 2601 84] Соединение сварное – неподвижное неразъёмное соединение двух или более частей конструкции, выполненное сваркой. По взаимному расположению соединяемых элементов различают… … Энциклопедия терминов, определений и пояснений строительных материалов

    Неразъёмное соединение при помощи заклёпок (Болгарский язык; Български) нитово съединение (Чешский язык; Čeština) nýtovaný spoj (Немецкий язык; Deutsch) Nietverbindung (Венгерский язык; Magyar) szegecselt kapcsolat (Монгольский язык) тавламал… … Строительный словарь

    Неразъёмное соединение, выполненное сваркой (Болгарский язык; Български) заваръчно съединение (Чешский язык; Čeština) svarový spoj (Немецкий язык; Deutsch) Schweißverbindung (Венгерский язык; Magyar) hegesztett kapcsolat (Монгольский… … Строительный словарь

    У этого термина существуют и другие значения, см. Соединение (значения). Соединение процесс изготовления изделия из деталей, сборочных единиц (узлов), агрегатов путём физического объединения в одно целое. Показатели работоспособности соединения… … Википедия

    Неподвижная или подвижная связь деталей, обусловленная конструкцией машины или отдельных её частей. В машиностроении под С. д. м. обычно понимают неподвижную связь (Неподвижное соединение) деталей машин; подвижная связь (соединение)… …

    Жёсткое неразъёмное соединение с помощью клея (Болгарский язык; Български) лепено съединение (Чешский язык; Čeština) lepený spoj (Немецкий язык; Deutsch) Klebeverbindung (Венгерский язык; Magyar) ragasztott kapcsolat (Монгольский язык) наамал… … Строительный словарь

    Соединение с механической связью в машинах и сооружениях, обеспечивающее неизменность взаимного положения деталей в процессе работы. Н. с. облегчают изготовление, ремонт, транспортирование изделий. Различают неподвижные разъёмные… … Большая советская энциклопедия

    неразъемное соединение - неразъёмное соединение — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] неразъемное соединение Соединение, использующееся для однократного подключения и отключения … Справочник технического переводчика

Классификация механических соединений и области их применения.

При изготовлении ЭА наряду с электрическими широко используются механические соединения, которые разделяются на две группы:

– разъем­ные;

– неразъемные.

Разъемные соеди­нения допускают полную разборку из­делия на детали без разрушения их целостности, что позволяет быстро за­менять детали и сборочные единицы в условиях эксплуатации. Резьбовые со­единения в общем объеме занимают наибольший удельный вес (до 51 %), но характеризуются высокой стоимо­стью и трудоемкостью. К ним отно­сятся резьбовое, байонетное, штифто­вое, шплинтовое и др.

Соединение считается неразъемным , если его раз­борка сопровождается разрушением материалов или деталей, с помощью которых оно осуществлено. Неразъем­ные соединения выполняют пайкой, сваркой, расклепыванием, развальцов­кой, запрессовкой, склеиванием и т.д. (рис.4.1).

Рис.4.1. Соотношение видов механических соединений.

Расклепывание приме­няют для конструкций, работающих при высоких температурах и давлени­ях, для прочных соединений неметал­лических деталей с металлами. Недос­татками клепаного соединения явля­ются:

– отсутствие герметичности шва,

– ослабление материала в месте соеди­нения,

– концентрация и неравномер­ное распределение напряжений,

– воз­никновение в соединениях значитель­ных деформаций, которые искажают взаимное положение деталей.

Это вы­зывает необходимость в повышении требований к жесткости используемых приспособлений.

Пайка и сварка конструкционных деталей имеют те же физико-химиче­ские особенности, достоинства и не­достатки, что и при выполнении мон­тажных соединений. Некоторые отли­чия заключаются в технологии: подготовке деталей, выборе материалов, ре­жимах и оборудовании.

Склеивание применяют для соеди­нения материалов в самых различных сочетаниях. Клеевые соединения об­ладают высокой долговечностью, кор­розионной стойкостью, теплоизо­лирующими, звукопоглощающими, демпфирующими свойствами, герме­тичностью. Склеивание отличается простотой, низкой себестоимостью сборки, легко может быть переведено на поточное производство. В настоя­щее время широко применяют комби­нированные методы неразъемных со­единений – клеесварные и клееклепаные. К недостаткам клеевых соедине­ний следует отнести сравнительно низкую стойкость при повышенных температурах, пониженную прочность при неравномерном отрыве, дефицит­ность, а также токсичность многих со­ставляющих клеевых композиций.

Разъемные соединения.

При механической сборке применя­ются следующие виды разъемных со­единений: резьбовые (до 90 %), штиф­товые, шплинтовые, байонетные. Резь­бовые соединения вы-полняются с ис­пользованием винтов, болтов, резьбо­вых шпилек, самонарезающих шуру­пов и применяются для установки наиболее тяжелых крупногабаритных деталей и сборочных единиц (транс­форматоров, дросселей, переключа­телей, приборов). Основным видом резьб является метрическая М2 – Мб. Для предохранения поверхностей де­талей от повреждений под гайки, го­ловки болтов и винтов подкладывают шайбы (рис. 4.2).

Рис.4.2. Резьбовые соединения:

а - болтовое; б - винтовое; 1 - болт; 2, 3, 4 – винты с потайной,

полукруглой и круглой головками соответственно; 5 - шайба.

При выполнении резьбового соеди­нения момент затяжки определяется условиями работы резьбового соеди­нения и тем, какой элемент (винт, гайка) ограничивает прочность соеди­нения. При соединении металличе­ских деталей винтом или болтом мо­мент затяжки лимитируется их проч­ностью на растяжение. Если винт ис­пользуется для стопора, то момент за­тяжки ограничивается прочностью его шлицев на смятие. При соединении неметаллических деталей момент за­тяжки лимитируется прочностью этих деталей.

Для механизированной сборки разъ­емных соединений при блочной и окончательной сборке в качестве ос­настки применяют ручные электрифи­цированные и пневматические инст­рументы. Инструмент с электроприво­дом (электроотвертка) приводится в движение встроенным электродвигателем типа МН-250 мощностью до 1000 Вт и скоростью завертывания 1000 об/мин. Достоинствами электро­отвертки являются: высокая произво­дительность, возможность 5-7-крат­ной перегрузки по крутящему момен­ту. Недостатки- большие масса и потребление электроэнергии. Элек­тродвигатель работает в импульсном режиме от источника постоянного то­ка в течение 0,1 с. Электроотвертка предназначена для метрических резьб М2 – Мб. Регулировкой пружины обес­печивается момент завертывания в пределах 500-1100 Н-м при скорости завертывания 250 об/мин.

Пневматический резьбосборочный инструмент ПГ-125 экономичен в ра­боте, имеет небольшую массу и «мяг­кую» характеристику привода, универ­сален, безопасен, допускает большие перегрузки. Скорость завертывания 200-500 об/мин, питание от сети сжа­того воздуха давлением 0,3-0,5 МПа. Применяется для резьб М2-М5. Не­достатками являются повышенный шум при работе, малое быстродейст­вие. Малогабаритный пневмозаверты-ваюший инструмент типа ПВ-МЗ предназначен для резьб диаметром до 3 мм, имеет массу 380 г, максималь­ный момент затяжки 300-500 Н/м и скорость вращения на холостом ходу до 650 об/мин. Широко применяется механизированный инструмент ПГ-Ю2, в котором с помощью гибкого вала вра­щение от электродвигателя передается редуктору со скоростью 146 об/мин. Инструмент состоит из вертикальной телескопической поворотной колон­ки, имеющей горизонтальную кон­соль, по которой перемещается каретка с закрепленными на ней электро­двигателем и редуктором. От него с помощью подвески в виде гибкого ва­ла вращение передается на резьбоверт. Наличие редуктора позволяет завин­чивать винты от М2,5 до Мб. Резьбо­верт может отклоняться от вертикали на 30°.

Резьбовые соединения предохраня­ют от самопроизвольного отвинчива­ния различными видами стопорения по ГОСТ 30133-95.

Стопорение наглухо обеспечивает высокую надежность, но неудобно для разборки. Осуществляется кернением самой резьбы или сквозной прошив­кой винта либо болта с помощью ко­нического или цилиндрического штиф­та (винта) (рис. 4.3).

Рис. 4.3. Виды стопорения наглухо:

а,б - кернением; в -штифтом; 1 -места кернения; 2 -штифт.

Стопорение пружинными шайбами со смещенными краями (шайбы Гровера) с подкладыванием под шайбу Гровера дополнительной стальной шайбы для защиты от повреждения поверхности детали заостренными концами шайбы (рис. 8.4).

Рис.4.4. Стопорение пружинными шайбами;

а -шайба; б -стопорение гайки; в -стопорение детали из мягкого материала;

1 -шайба Гровера; 2 -стальная шайба.

Стопорение путем повышения сил трения в резьбе и на опорных торцах головок винтов, болтов или гаек. Оно достигается с помощью контргайки, которая увеличивает силы трения, ли­бо применением специальной гайки со смещенными витками, которая имеет дополнительный поясок со сме­щенными двумя-тремя витками резь­бы (рис. 8.5, а). Иногда в эту гайку за­кладывается упругий элемент – фиб­ра (рис. 8.5, б). Для стопорения ис­пользуют также разгибки в стороны свободных концов разрезанного винта (рис. 8.5, в).

Рис.4.5. Стопорение повышением сил трения:

1 -основная часть гайки; 2 -кольцевая проточка; 3 -поясок; 4 -часть гайки

со смещенными витками; 5 -фибра; 6 -винт; 7 -разведенные концы винта.

Стопорение краской или заливочной массой является самым простым и де­шевым видом, совмещается с операцией контроля и применяется в быто­вой ЭА. Состав заливочной массы: 75 % нитроэмали, 25 % молотого таль­ка. После нанесения заливочной мас­сы соединение подвергают сушке в течение 3-5 ч. Краска может нано­ситься с одной стороны резьбового со­единения, по периметру выхода резьбы и заливкой головки винта. Для тропи­ческою исполнения аппаратуры вместо краски используют герме­тики типа «Унигерм 2Н», которые су­шат в течение 6 ч при температуре 60°С.

Стопорение шплинтом с корончатой (прорезной) гайкой или проволочной петлей, которые являются легко заме­няемыми и сравнительно дешевыми элементами, обеспечивающими доста­точную надежность.

Штифтовые соединения применяются для соединения деталей, испытываю­щих крутящие моменты. Используют штифты цилиндрической и конической формы из высококачественной леги­рованной стали. Конические штифты имеют конусность и со­здают натяг при сборке деталей. Штифтовка является сложной и ответствен­ной операцией, поскольку неправиль­ная посадка штифта приводит к отка­зу аппаратуры. Штифтовые соедине­ния как самостоятельные используют­ся редко, обычно их применяют для стопорения резьбовых соединений.

Шплинтовые соединения используют в основном для крепления шайб и га­ек на осях и болтах. Шплинт свобод­но вставляют в отверстие, проходящее через гайку и ось болта, а его высту­пающие концы разводят.

Байонетное соединение – основной вид присоединения коаксиальных разъ­емов, экранов пальчиковых радиоламп и других деталей. Оно удобно в разбор­ке, но характеризуется наименьшей на­дежностью. При выполнении этого со­единения выступы одной детали входят в прорези другой полой детали, а за­тяжку соединения производят, повора­чивая одну деталь относительно другой.

Неразъемные соединения.

Заклепочное соединение применяют для листовых металлических деталей, когда требуется обеспечить его высо­кую механическую прочность. Заклепки изготавливают из мягкой стали (СтЗ, Ст5, Ст10) для соединения стальных деталей конструкции с высокой меха­нической прочностью, а из латуни – для низкого электрического сопротив­ления и достаточной механической прочности. Эти металлы подвергаются коррозии, поэтому после выполнения соединения заклепки покрывают ла­ком или краской. Для деталей малой массы в ВЧ- и СВЧ-цепях применяют медные заклепки Ml, M2, а для не­ответственных деталей с малой мас­сой – из алюминия марок А1 и А2. Заклепки имеют полукруглую, потай­ную или полупотайную головку.

Замыкающую головку заклепки об­разуют ударами специальной обжимки по стержню заклепки, которая с про­тивоположной стороны опирается на специальную поддержку – наковаль­ню (рис. 4.6, а). Наковальня должна иметь лунку по форме закладной го­ловки, ее масса в 4-5 раз больше массы молотка.

Рис.4.6. Соединение расклепыванием (а) и развальцовкой (б)

1,3 – детали; 2 – закладная деталь.

Механизация клепки осуществляет­ся высокопроизводительными вибра­ционными или соленоидными пресса­ми, пневматическими приспособле­ниями с усилием 1-5 кН. Контроль качества соединения осуществляют наружным осмотром, при котором об­ращается внимание на правильность формы головки и точность прилега­ния к листам.

Соотношения при расклепывании деталей:

d 1 = (1,5-1,7) d 0 , l = (h 1 + h 2 ) +3d 0

Усилие расклепывания:

P = (2,0-2,5) σ в S

где σ в – предел прочности материала заклепки на растяжение;

S – площадь соединения.

Для расклепывания в мелкосерий­ном производстве применяются нако­вальни или молотки (массой 200-500 г), в серийном – пневматическая расклепочная оснастка с усилием 1-5 кН, в случае повышенной прочно­сти – кривошипно-шатунные либо вибропрессы с усилием несколько тонн. Виды и причины брака при клепке листов приведены в табл. 4.1.

Таблица 4.1. Виды и причины брака при клепке листов.

Развальцовка применяется для со­единения металлических и неметалли­ческих деталей, например разъема с печатной платой. Она характеризуется меньшим усилием образования соеди­нения за счет применения пустотелой заклепки, так называемого пистона, имеющего вид трубки, развальцован­ной с одной стороны (рис.4.6, б). Пис­тоны изготавливают из алюминия, ла­туни, стали и красной меди.

Усилие развальцовки:

P = σ в S

где:

Соединения пластической деформа­цией образуются путем деформации элементов крепления деталей либо зачеканки одной детали в другую (на­пример, сборка роторной секции кон­денсатора переменной емкости). Этот процесс отличается высокой произво­дительностью, не требует специаль­ных деталей, однако не рекомендуется при значительных механических на­грузках.

Запрессовка обеспечивается необхо­димым натягом при условии, что диа­метр охватывающей детали меньше диаметра охватываемой детали. Для мелких деталей усилие создают молот­ком, для больших – с помощью прес­са. Для соединения металлических деталей применяют посадки: глухую, тугую, напряженную. Усилие запрессовки зависит от разности диа­метров, формы и чистоты поверхно­сти соприкасающихся деталей. Иногда для обеспечения запрессовки одну из деталей нагревают.

Опрессовка (армирование) заключа­ется в образовании соединения ме­таллической и неметаллической дета­лей путем литья под давлением либо опрессовкой реактопластам (Т = 160- 220 °С, Р = 2-5 МПа).

Склеивание это технологический процесс соединения деталей с помо­щью специ-альных связующих мате­риалов, которые вследствие взаимо­действия с поверхностью деталей и изменения своего физического со­стояния способны формировать проч­ные соединения. Соединение склеива­нием является результатом проявле­ния сил адгезии, аутогезии и когезии. Адгезией называется явление сцеп­ления двух разнородных материалов при их контакте, которое возникает в результате проявления сил молекуляр­ного взаимодействия клея и соединяе­мой поверхности. Аутогезией называ­ется явление сцепления поверхностей однородных материалов (самослипа­ние). Когезия явление сцепления молекул склеивающего материала в объеме тела. В пленке клея наблюда ется образование прочных молекуляр­ных цепей от границы раздела фаз в глубь полимера, что повышает проч­ность клеевого шва.

Общая схема развития сцепления при склеивании включает следующие процессы: адсорбция – адгезия – смачивание – поверхностные химиче­ские реакции.

Адсорбция есть явление концентрации молекул полимера из раствора вблизи поверхности субстра­та (подложки) под действием молеку­лярных сил. Различают два вида ад­сорбции: физическую и химическую.

Физическая адсорбция вызывается сила­ми Ван-дер-Ваальса и почти не требует энергии активации. Поскольку энер­гия связи при физической адсорбции мала, то этот процесс обратим и энергетическое со­стояние адсорбированных молекул ма­ло отличается от свободных. Взаимодействие молекул адгезива и субстрата происходит в результате полярных, индукционных и дисперсионных сил.

Индукционные силы возникают в результате взаимодействия постоянного диполя с неполярными молекула­ми. Дисперсионное взаимодействие свойственно всем молекулам и обусловлено смещением центров положительных и отрицательных зарядов относительно

среднего положения в отдельные мгновения.

Химическая адсорбция протекает со значительным тепловым эффектом и требует заметной энергии активации. При этом проис­ходит изменение электронной струк­туры

взаимодействующих молекул.

Процесс склеивания состоит из не­скольких стадий. На первой стадии образования соединения в результате броуновского движения молекул в адгезиве и адсорбции молекул адгезива происходит накапливание молекул клеящего вещества у поверхности суб­страта. Перемещение молекул адгези­ва интенсифицируется давлением и нагревом. На второй стадии, когда расстояние между молекулами клея и субстрата станет менее 5 нм, начина­ют действовать межмолекулярные си­лы адгезии, приводящие к образова­нию различных связей типа диполь-диполь, диполь-наведенный диполь. Связи между молекулами адгезива и субстрата оказываются более прочны­ми, чем взаимодействие молекул по­лимера с молекулами растворителя клея. Это значительно усиливает миграцию молекулярных цепей полиме­ра к субстрату и приводит к образова­нию большого числа точек контакта.

Работа сил адгезии между твердым телом и жидкостью определяется уравнением Дюпре:

W т.ж = γ тг + γ жг + γ тж

где γ тг, γ жг, γ тж – поверхностные на­тяжения на соответствующих грани­цах раздела

Рис. 4.7.Схема растекания капли жидкости по по­верхности твердого тела

С учетом того что соотношение сил поверхностного натяжения определя­ется равенством Юнга:

γ т.г = γ т,ж + γ ж.г Cоsθ

получим уравнение для работы сил адгезии:

W т.ж = γ жг (1+ Cоsθ)

Из этого уравнения следует, что мак­симальная работа сил адгезии будет получена при Cоsθ = 1, т. е. когда угол θ = 0. В этом случае жидкость полно­стью смачивает поверхность твердого тела.

Обычно поверхность твердого тела загрязнена жировыми пленками, ко­торые в значительной мере изменяют поверхностные свойства тел. Для уве­личения работы адгезии при склеива­нии эти пленки необходимо удалять.

Прочность клеевого соединения увеличивается, если склеиваемые ма­териалы имеют разветвленные поры, что способствует диффузии молекул полимера в пограничный слой мате­риала. Тонкие пленки клея (0,1-0,2 мм) дают более надежное соедине­ние за счет прочных межмолекуляр­ных сил, чем толстые слои.

Технологический процесс склеива­ния состоит из следующих операций:

– очистка поверхностей деталей от за­грязнений;

– нанесение клея на склеиваемые поверхности;

– подсушивание нанесенного слоя клея;

– соединение склеиваемых деталей и полимеризация клея;

– контроль качества клеевых соедине­ний.

Подготовку поверхностей деталей под склеивание проводят механиче­ской обработкой (гидропескоструйной очисткой, шлифованием, зачисткой наждачной бумагой). Обезжиривание осуществляют органическими раство­рителями (трихлорэтилен, этиловый спирт и др.).

Клей наносят на склеиваемые по­верхности кистью, пульверизатором или путем окунания. Толщина клеево­го шва должна находиться в пределах от 0,1 до 0,25 мм. Подсушивание на­несенного слоя клея перед соединением деталей необходимо для удаления растворителей. Если растворитель ос­тается в клеевом слое во время сбор­ки, это может привести к образова­нию непрочных соединений. Подсуш­ка производится обычно на воздухе в течение 5-20 мин. После склеивания деталей осуществляется полимериза­ция клея при повышенных температу­ре и давлении. Так, для клеев типа БФ температура нагрева соединения доставляет 60-120 °С, давление – (1,5-8) 10 5 Па.

Контроль качества клеевых соеди­нений осуществляют визуальным осмотром, с помощью дефектоскопов (ультразвуковой резонансный метод), выборочным испытанием изделия на разрушение. Для многослойной систе­мы материалов наблюдаются четыре типа разрушения:

– адгезионный – полное отслаивание адгезива от субстрата (рис. 4.8, а);

– аутогезионный – разрушение по месту слипания склеиваемых поверхностей (рис. 4.8, б);

– когезионный – разрушение одного из склеиваемых материалов или са­мой клеевой пленки (рис. 4.8, в);

– смешанный – характеризуется частичным расслаиванием по месту кон­такта либо частичным разрушением адгезива или субстрата.

Рис.4.8. Типы разрушения клеевых соединений.

Стыковку элементов и конструкций можно разделить на две основные группы: разъемные и неразъемные соединения. К первым относят те, которые можно разобрать без нарушения целостности скрепляющих элементов. Это крепления с помощью гаек, болтов, шпилек, винтов, все соединения с резьбой и без нее. Неразъемными считаются такие, при разборке которых придется нарушить элементы крепления.

К ним относят: сварные, клееные, заклепочные, сшивные и паяные. Разъемные и неразъемные соединения широко используются в определенных областях промышленности. Ниже мы рассмотрим каждый из видов более подробно.

Разъемные соединения

Их исполнение состоит в высверливании отверстий немного большего диаметра, чем крепежный элемент (винт или болт). Делается это для того, чтобы в обеих скрепляемых деталях были точные отверстия. Погрешность в долю миллиметра компенсируется, в особенности для элементов с большим количеством креплений. При использовании болтов и винтов для надежности стыка на них надевают гайку и шайбу.

Первую подкладывают под вторую для неподвижности соединения, она не дает деталям вращаться. Существует еще пружинное кольцо, которое имеет два острых зуба. Ими она упирается в заготовку и деталь, тем самым препятствует самопроизвольному раскручиванию гайки.

Шурупы стягивают детали, нарезая резьбу самостоятельно. При их применении гайки и шайбы не нужны. Шпильки используются, если к массивной детали крепится другая. Она имеет резьбу на обоих концах, под нее в заготовке сверлят отверстие больше длины

Неразъемные соединения

Они бывают:

  • сварные;
  • заклепочные;
  • паяные;
  • клеевые.

Такие виды неразъемных соединений нашли применение в отдельных областях производства. Рассмотрим каждый из них по отдельности.

Сварка

Соединение, усыновленное путем межатомных связей между частями деталей при нагревании, называют сварным.

Неразъемные которых была правильно выполнена, достигают необходимой прочности, снижения себестоимости, а также массы детали.

Источниками нагрева элементов могут быть:

  • расплавленный шлак;
  • газовое пламя;
  • электрическая дуга;
  • плазма;
  • лазерный луч.

Металл, который подлежит сварке, называют основным. А тот, что используется в ванне - присадочным.

Участок, прихваченный подобным способом, называется сварным швом.

Получение неразъемных соединений таким образом может быть следующих видов:

  • контактная сварка;
  • электородуговая ручная;
  • автоматическая под флюсом и полуавтоматическая;
  • дуговая.

Шов также подразделяется на:

  • стыковой;
  • нахлесточный;
  • угловой;
  • тавровый.

Любой из них может быть как односторонним, так и двухсторонним.

Они делятся на прерывные и беспрерывные. Также есть различия в форме поперечного сечения: нормальный шов, выпуклый или вогнутый.

Преимущества:

  1. Низкая стоимость на такие неразъемные соединения, за счет простоты шва и малой затрате трудоемкости.
  2. Относительно небольшая масса, по сравнению с другими методами работ.
  3. Нет необходимости делать отверстия в детали, что придает прочность в ее сечении.
  4. Автоматизация сварочного процесса подразумевает его герметичность.

Недостатки:

  1. Появление деформации и коробления после произведенных работ, а также возникновение остаточных напряжений.
  2. Выдерживает несильную вибрацию и удары.
  3. Сложность в проверке качества.
  4. Рабочие, осуществляющие неразъемные соединения деталей сваркой, в обязательном порядке должны пройти обучение и подтверждать свою квалификацию.

Пайка

Детали в методе пайки скрепляются введением дополнительного металла припоя.
Причем температура плавления припоя должна быть меньше, чем у соединяемых деталей. По данному критерию припои различают:

  • особолегкоплавкие. Необходимая температура их плавления составляет всего 145 градусов;
  • мягкие или легкоплавкие. Рабочий нагрев не выше 450 градусов Цельсия;
  • твердые или среднеплавкие. Температура их плавления находится в диапазоне от 450 до 600 градусов;
  • высокотемпературные или высокоплавкие. Такие металлы плавятся при температуре свыше 600 градусов Цельсия.

Припои

В зависимости от компонента они делятся на:

  • оловянно-свинцовые (ПОС);
  • оловянные (ПО);
  • цинковые (ПЦ);
  • серебряные (ПСр);
  • медно-цинковые (ПМЦ, латунные).

Большинство работ по припою производят с применением оловянно-свинцового материала марки ПОС. Как правило, их выпускают в виде проволоки, лент или прутиков.

Перед припоем поверхности хорошо очищают. Чтобы они не окислились, применяют специальный паяльный флюс. Это вещество не дает образовываться оксидам и очищает от них поверхности деталей, способствует лучшему растеканию припоя. Определенный вид флюса подходит под конкретную температуру, свыше которой он перестает работать и сгорает.

Заклепочные

Это соединения, которые создают с применением специальной детали - заклепки. Она имеет стержень и головку. Процесс получения неразъемных соединений происходит за счет образования на другом конце детали замыкающей головки, она получается путем сжатия конца стержня. Такая конструкция вовсе неподвижная и при этом неразъемная. В ней отсутствует возможность смещения деталей относительно друг друга.

Используют такое крепление для деталей небольшой толщины в основном листовых материалов или там, где применение высоких температур недопустимо из-за возможной деформации деталей. Когда заклепки стоят рядом, они образуют заклепочный шов.

Материал элементов должен соответствовать материалу скрепляемых деталей, иначе может возникнуть из-за разности коэффициентов температурного расширения. Головки заклепок бывают круглые, потаенные, полупотаенные и плоские.

Плюсы

Преимущества данного соединения:

  1. Способность выдерживать большую вибрацию и нагрузки на удар, что не по силам сварке.
  2. Применение возможно в материалах, которые не свариваются или этот процесс очень долог.
  3. Нет применения высоких температур при соединении.

Минусы

Среди них можно отметить следующие моменты:

  1. Большой расход металла на произведенную работу.
  2. Увеличение веса конструкции.
  3. Высокая трудоемкость.
  4. Технологичность процесса невысокая.

Клеевые

Чтобы получить прочные неразъемные соединения, достаточно соединить детали с помощью клеевого состава. Действие происходит путем образования связей на межмолекулярном уровне поверхности склеиваемой детали и пленкой клея.

Применение такого способа можно встретить в конструкциях из различных материалов. Крепление на основе клея применяют даже в мостостроении и авиации. Долговечность такого соединения и его качество будет зависеть от подготовки поверхностей деталей и вида нагрузки, которая будет на них воздействовать. Нужно провести очищение поверхностей от ржавчины и жировых пятен, после обработать места наждачной бумагой.

Склеивать детали, на которые будет действовать нагрузка на сдвиг или поворот, при маленькой площади стыка не следует. Это приведет к потере прочности. Склеивать лучше те части, которые подвержены смещению относительно друг друга или нагрузке растяжения.

Преимущества клеевого способа:

  1. Соединить таким образом можно любые заготовки и конструкции, независимо от их формы, массы или материалов.
  2. Высокая устойчивость к коррозии.
  3. Герметичность, что позволяет производить работу с трубопроводами.
  4. Не вызывает деформацию деталей.
  5. Не создается концентрация напряжений.
  6. Надежность работы в условиях вибрационных нагрузок.
  7. Низкая стоимость расходного материала.
  8. Клеевые неразъемные соединения не утяжеляют конструкцию.
  1. Низкая прочность, особенно при нагрузке на отрыв.
  2. Недолговечность, некоторые виды клея могут стареть.
  3. Низкая устойчивость к тепловой нагрузке.
  4. Многие соединения должны пройти длительную выдержку пред эксплуатацией.
  5. Обязательное соблюдение мер безопасности.

Неразъемное соединение полиэтилен-сталь

Широкое применение для стыковки труб стальных и современных полиэтиленовых получило неразъемное соединение полиэтилен-сталь.

Оно позволяет надежно скрепить между собой пластиковые и металлические трубы, а также установить необходимую арматуру для запоров. Чтобы изготовить неразрывную конструкцию, применяют трубы из полиэтилена, изготовленные по определенному стандарту.

Получают неразъемное соединение сталь (переходник ПЭ-сталь) путем сварки патрубка металлического участка с полиэтиленовым. Применять этот метод можно в качестве заглушек на газо- и водопроводах магистральных сетей.

Такие неразъемные монтируются к газопроводам жилых домов. Часто можно встретить их в котельных установках. Применение стальных трубопроводов в наше время все чаще вытесняется аналогом полиэтиленовым. Связано это с очевидным преимуществом пластиковых труб над металлическими. Поэтому они используются все чаще. Неразъемное соединение полиэтилен-сталь настолько надежно, что не требует особого обслуживания.

Его установка происходит напрямую в грунт без использования колодцев. Монтаж осуществляют с помощью сварки встык или терморезисторной. Неразъемное соединение полиэтилен-сталь может быть с усиливающей муфтой или без нее. Данная деталь придает переходнику способность выдерживать большое давление и непрерывную нагрузку 1 Мпа. Переходник без муфты может выдержать нагрузку не больше 0,6 Мпа. Соединение металла с полиэтиленом может происходить при помощи резьбы или с применением различных фланцев.

Итак, мы рассмотрели основные их преимущества и недостатки.

Новосибирский Монтажный Техникум

По технической механике

Тема: Неразъемные соединения деталей машин

Выполнил: Лоцманов С. С.

Проверил: Харитонова О.Е.

2006
Неразъёмные соединения деталей машин


Неразъёмное соединение - соединение с жёсткой механической связью деталей в каком-либо узле машины или конструкции, сохраняющееся в течение всего срока службы. При неразъемном соединении, разборка обычно невозможна без разрушения или повреждения поверхностей деталей.


Основные виды неразъемных соединений:


Заклёпочные,


Сварные,


Клеевые,


Комбинированные


Чаще всего не применяют какое-либо отдельное соединение, а в зависимости от нагрузок и области применения, комбинируют их виды.

Применение того или иного вида неразъемного соединения, обусловлено

требованиями изготовления, сборки, эксплуатации машин, а так же
экономическими соображениями.


Заклепочные соединения


Стандартные вытяжные заклепки

Позволяют осуществить неразъемное соединение с доступом только с одной стороны. Они производятся различной длины и диаметров, бывают с куполообразным (стандартным), увеличенным и потайным бортиком, могут быть из алюминия, стали, нержавейки, меди, в зависимости от вида применения. Для некоторых применений имеют специальную конструкцию: закрытые, многозажимные, лепестковые, рифленые, контактные и самоперфорирующие.

Усиленные вытяжные заклепки

Позволяют осуществить неразъемное соединение с доступом только с одной стороны. Усиленные заклёпки изготавливают из алюминия, стали, нержавейки, в зависимости от вида применения. При установке создают надежное соединение, сравнимое по структуре с соединением полнотелой заклепкой. Обладают высокой сопротивляемостью к нагрузкам на растяжение и сдвиг. Они подходят для закрепления предметов подверженных вибрации. Главный сектор применения: корпусоа автомобилей, металлические

контейнера, электрошкафы и др.


Штифты с обжимным кольцом

Это система быстрой установки для сборки частей испытывающих высокие механические нагрузки или подвеграющиеся высокой вибрации. Состоят из штифта и обжимающего кольца, штифт имеет насечки для жёсткой фиксации обжимного кольца. При установке требуется доступ с обратной стороны. Выпускаются различных длин и диаметров, в зависимости от толщины пакета и нагрузок. Материал: сталь, алюминий и нержавейка.


Заклепочные гайки и болты

Являются эффективным решением для получения наружной или внутренней резьбы на тонкостенной детали, в том числе и цилиндрической. Они устанавливаются в предварительно подготовленное (пробитое или просверленное) отверстие с одной стороны, обжимаются вытягиванием штока инструмента с формированием с обратной стороны замыкающего бортика. Материал: сталь, нержавейки, алюминия и бронзы.


Достоинства заклепочных соединений:


1. Высокая прочность и надежность соединения

2. Простота контроля качества соединения

3. Возможность соединения деталей из любых материалов

4. Неизменность физико-химических свойств материалов соединяемых деталей

5. Высокая работоспособность при ударных и повторно-переменных нагрузках

6. При разборке скрепляемых деталей (разрушении заклепок), соединяемые детали
обычно почти не повреждаются и могут быть использованы повторно


Недостатки заклепочных соединений:


1. Неполное использование материала соединяемых деталей в результате их
ослабления заклепочными отверстиями

2. Сложность технологического процесса изготовления клепанных конструкций

3. Трудность соединения деталей сложной конструкции

4. Соединение деталей встык требует применения специальных накладок

5. Заклепки и соединяемые детали должны быть однородными, с одинаковым
температурным коэффициентом линейного расширения


Сварные соединения


СВАРКА - процесс получения неразъемного соединения деталей машин,

конструкций и сооружений при их местном или общем нагреве, пластическом деформировании или при совместном действии того и другого в результате установления межатомных связей в месте их соединения. Сварке подвергают детали из металлов, керамических материалов, пластмасс, стекла и др.

Существуют способы сварки, при которых материал:


Расплавляется (дуговая, электрошлаковая, электронно-лучевая,
плазменная, лазерная, газовая и др.),


Нагревается и пластически деформируется (контактная, высокочастотная,
газопрессовая и пр.)


Деформируется без нагрева (холодная, взрывом и др.); способ
диффузионного соединения в вакууме.


Различают также сварки:

по виду используемого источника энергии:

дуговая, газовая, электронно-лучевая и др.


по способу защиты материала:

под флюсом, в защитных газах, вакууме и др.;


по степени механизации:

ручная, полуавтоматическая и автоматическая.


Выбор того или иного способа сварки зависит от физико-химических свойств свариваемых материалов, условий ее проведения, толщины соединяемых деталей и конструкции соединений.


Достоинства сварных соединений:


1. Экономия материала (Сварные конструкции в среднем легче клепанных на 20-25%)

2. Плотность и непроницаемость соединений

3. Возможность соединения деталей любых криволинейных профилей произвольной
толщины

4. Трудоемкость сварного соединения значительно меньше заклепочного

5. Бесшумность технологического процесса сварки и возможность ее автоматизации


1. Сложность проверки качества шва (только визуально)

2. Возможность нарушения физико-химических свойств соединяемых деталей в зоне
сварки

3. Наличие внутренних "напряжений" в зоне сварки, что снижает прочность соединения

Клеевые соединения

Клеевое соединение - неразъёмное соединение деталей машин или строительных конструкций, осуществляемое с помощью клея. Клеевое соединение позволяет скреплять различные, в том числе и разнородные материалы, обеспечивая равномерное распределение напряжений.

Клеевое соединение используют при изготовлении изделий из

стали, алюминия, латуни, текстолита, стекла, фанеры, древесины,

ткани, пластмассы, резины и др. материалов, которые можно соединять

в различных сочетаниях.


Чаще всего с помощью клея выполняют соединения, работающие на сдвиг или равномерный отрыв. Такие соединения для стальных изделий обеспечивают предел прочности на сдвиг 20-35 Мн/м2 (200-350 кг/см2), а в ряде случаев значительно выше.

Прочность клеёного шва пластмасс обычно превышает прочность самого материала. Недостатками клеевых соединений являются их меньшая долговечность, по сравнению со сварными и заклёпочными соединениями (особенно при резких колебаниях температуры), и низкая прочность на односторонний неравномерный отрыв. В этих случаях хорошие результаты даёт применение комбинированных соединений - клеезаклёпочных и клеесварных.


Достоинства клеевых соединений:


1. Коррозионная и бензомаслостойкость

2. Уменьшение массы конструкции по сравнению с другими видами неразъемных
соединений

3. Невысокая концентрация напряжений в месте соединения

4. Возможность соединения практически любых конструкционных материалов

5. Возможность соединения деталей практически любой толщины

6. Герметичность и достаточная надежность соединения

7. Высокая усталостная прочность

8. Значительно меньшие, чем при сварке и клепке, трудовые затраты на единицу
продукции

Недостатки сварных соединений:


1. "Старение", т.е. снижение прочности соединения с течением времени (некоторые клеи
обладают устойчивостью против старения)

2. Низкая теплостойкость

3. Невысокое сопротивление растяжению и сдвигу, особенно в случае неравномерного
отрыва

4. Необходимость тщательной зачистки и пригонки склеиваемых поверхностей

Неразъемными соединениями называются такие соединения, которые невозможно разобрать без нарушения элементов соединяемых деталей. К этому виду соединений относятся соединения деталей заклепками, завальцовкой и развальцовкой, склейкой, сваркой и с гарантированным натягом.

Соединение деталей заклепками осуществляется путем *установки заклепки в заранее просверленное отверстие соединяемых деталей и расклепывания (формообразования) замыкающей головки заклепки инструментом.

Для клепки деталей применяют заклепки, которые представляют собой стержни 3 (рис. 7) с закладными головками 4. Заклепки бывают сплошными и пустотелыми, а также с полукруглой и конической (потайной) заклад-ными головками.

Процесс клепки основан на пластичности металла заклепок, поэтому их изготовляют из деформируемых металлов и сплавов: малоуглеродистой стали, мягкой латуни и дюралюминия.

При клепке деталей применяют следующий инструмент: подставки (поддержки) с зажимными устройствами, об-жимки, струбцинки (натяжки), слесар-ные молотки и т. д.

Подставки 6, которые поддержи-вают склепываемые детали 5 снизу, должны быть тяжелее собираемых де-талей и слесарного молотка. Ударная часть обжимки 2, которой формируют замыкающую головку 1 заклепок, должна соответствовать типу головки выбранной заклепки.

Струбцинками (натяжками) стяги-вают соединяемые детали для получения выступающего конца заклепки, деталей заметами расчетной величины.

Рис.7.

Длина выступающей части (конца) заклепки отно-сительно плоскости заклепываемых деталей должна быть такой величины, чтобы ее хватило для образования замыкающей головки заклейки.

Для получения полукруглой головки (для средних диаметров заклепок) длина выступающей части заклепок должна составлять 1,5d, а для потайной головки 0,7-- 0,8d, где d -- диаметр стержня заклепки.

Технологический процесс соединения заклепкой ве-дется в следующей последовательности: фиксация и крепление склепываемых деталей 5 по чертежу;

Установка заклёпки в отверстие склепываемых деталей и установка узла закладной головкой 4 заклёпки на рабочей части поддержки 6, закреплённой в зажимном устройстве 7;

Расклёпывание и оформление замыкающей головки заклёпки обжимкой 2 при помощи молотка;

Контроль качества соединения путём внешнего осмотра и опробования.

Соединение деталей заклёпками применяют в тех случаях, когда невозможно применить сварку или пайку, например соединение ламелей с планками фотозатворов, соединение тормозного кольца с диском фрикционных муфт, а также соединение деталей, изготовленных из кожи, фибры и других разнородных материалов.

В процессе сборки оптико-механических приборов и их составных частей выполняются операции по склеиванию оптических деталей с механическими и ещё чаще - приклеивание прокладок, изготовленных из различных неметаллических материалов, к оптическим и металлическим деталям. Например, при сборке прицельных окуляров, чтобы предохранить сетку от поворота, осуществляют цементирование сетки в оправе глетоглицериновым клеем-цементом (раствор свинцового глета в обезвоженном глицерине). При этом необходимо иметь в виду, что клеящая способность клея-цемента сохраняется всего 15-20 мин. Склеенная сборочная единица должна быть выдержана при температуре 18-30° в течение 3-4 часов.

Кроме того, при сборке оптических узлов применяют клеи ОК-50 и ОК-46 для соединения деталей оптики с металлическими деталями (например, при сборке призм и линз видоискателей некоторых дальномерных фотоаппаратов и киносъёмочных камер).

Для приклеивания прокладок, изготовленных из бумаги, картона, фибры, пробки и других материалов, к оптическим деталям (призмам, зеркалам, выравнивающим стёклам и др.) широко применяют нитроклей АК-20 и шеллачный клей (раствор шеллака - природной смолы некоторых тропических растений - в этиловом техническом спирте).

При соединении деталей из теплоизоляционных материалов (пенопласта, фторопласта, текстолита), лакоткани, кожи, эбонита, фибра и других материалов с металлическими деталями и деревом применяют клеи БФ-4 и ПУ-2.

Для склеивания деталей из резины и прорезиненных материалов с металлическими и деревянными при сборке приборов применяют клей марки 88Н или термопреновый клей.

Соединение деталей клеем выполняют путём нанесения жидкого клея на склеиваемые поверхности деталей с последующей выдержкой и при необходимости сушкой в термошкафах при определённой температуре в течение некоторого времени. Поверхности склеиваемых деталей должны быть тщательно обезжирены ацетоном или петролейным эфиром. Соединение деталей клеями повышает герметичность собираемых узлов, не поддаётся коррозии и устойчиво против вибраций. К недостаткам клеевых соединений следует отнести длительность выдержки собранных узлов для окончания процесса отвердения клея.

Соединение деталей с гарантированным натягом осуществляют путём запрессовки охватываемой детали в отверстие охватывающей детали с натягом.

Величину натяга, равную разности между диаметрами D и d сопрягаемых деталей (рис.8.), выбирают с учётом условий, при которых работает данное соединение в изделии.

В процессе запрессовки происходит деформация сопрягаемых деталей, т.е. увеличение размера (диаметра) охватывающей и уменьшение размера охватываемой детали.

Степень деформации зависит от величины натяга: чем больше натяг, тем больше степень деформации деталей. При значительных деформациях могут образоваться трещины и произойти разрушение сопрягаемых деталей. Следовательно, величина натяга должна быть рассчитана с учётом прочности материала охватывающей детали.

Процесс запрессовки может быть выполнен следующими способами: ручным при помощи ручного молотка или пресса; при помощи машинного пресса; путем запрессовки с нагревом охватывающей детали (при этом материал, расширяясь, увеличивает посадочное отверстие детали, что способствует легкой запрессовке; путем запрессовки с охлаждением охватываемой детали (при этом проис-ходит сжатие материала с уменьшением наружного диаметра данной детали, которая войдет в отверстие сопрягаемой детали без особого усилия).

Технологический процесс соединения деталей с гаран-тированным натягом (рис.8.) включает подготовку по-верхностей сопрягаемых деталей, связанную с выполне-нием фасок для захода охватываемой детали 2 в отвер-стие охватывающей детали 3, установку и ориентацию одной детали относительно другой в приспособлении 4 стола 5 пресса, запрессовку прессом 1 охватываемой де-тали с применением смазочных веществ и контроль полу-ченного соединения. Этот вид соединения применяют для сборки деталей вращения типа осей, валов колец и др.

Соединение деталей развальцовкой осуществляют путем раскатки кромки одной детали и плотного прижатия этой кромки к поверхности другой детали. На рис.9. показан процесс соединения, выполняемого этим способом. Здесь зубчатое колесо 3 насаживается на посадочный диаметр оси 2, которая закреплена в зажимном устройстве 1.


Рис.8.

Рис.9. Соединение деталей с натягом.

Коническая оправа 5 под действием силы Р давит и раскатывает кромку 4 до плотного прижатия и закре-пления зубчатого колеса 3.

Соединение развальцовкой применяют для сборки осей с зубчатыми колесами и других деталей, работающих с незначительными нагрузками, так к ж при этом соеди-нении возможно проворачивание деталей относительно друг друга.

Крепление деталей завальцовкой является самым рас-пространенным способом соединения механических дета-лей с оптическими деталями круглой формы. Это соеди-нение осуществляется путем плотной закатки края метал-лической оправы на фаску по всей окружности оптической детали. При этом не допускается закатка оправы на полированную поверхность стекла.

Все посадочные места оправы под оптические детали выполняются в механических цехах, и оправы поступают на сборку после отделки их в отделочном цехе.

Рис.10.

Рис.11. Завальцовка оптических деталей вручную.

При сборке таких узлов необходимо подготовить оправы под завальцовку. Эта подготовка заключается в проточке наружного края оправы (рис. 10.) по действи-тельному размеру края линзы и ее фаски.

Оптические детали завальцовывают на токарно-арматурных станках вручную или с помощью специальных приспособлений.

Металлическую оправу 1 устанавливают в цанговый (зажимной или разжимной) патрон или резьбовую оправу станка и сообщают ей вращение. При завальцовке вручную применяют специальный инструмент - полировальник (или воронило) 3, которым закатывают кромку оправы на фаску оптической детали 2. Полиро-вальник опирают на подручник станка.

При массовом производстве оптико-механических при-боров детали завальцовывают так называемыми ролико-выми головками, которые могут быть установлены в ко-ническое отверстие задней бабки токарно-арматурного станка пли шпинделя специального станка. Кромка оправы закатывается тремя вращающимися вокруг своих осей роликами 2, закрепленными па головке /, которая, в свою очередь, обкатывается вокруг детали (рис. 11.). Оправа 3 с оптической деталью закрепляется в специаль-ном приспособлении 4, которое прижимается к роликам пружинным механизмом, обеспечивающим постоянное усилие прижима при завальцовке деталей. При подготовке оправы к завальцовке отделка ее наружной кромки нарушается и она становится блестящей, поэтому ее после завальцовки тут же, на станке при помощи кисточки покрывают черной нитроэмалью.

Статьи по теме: