Какие бывают орбитали. Что такое атомные орбитали

В связи с тем, что при описании элементов их подразделяют на группы с разными орбиталями, очень кратко напомним сущность этого понятия.

Согласно модели атома Бора, электроны вращаются вокруг ядра по круговым орбиталям (оболочкам ). Каждая оболочка имеет строго определенный энергетический уровень и характеризуется некоторым квантовым числом. В природе возможны только определенные энергии электрона, то есть дискретные (квантованные) энергии орбиталей («разрешенные»). Теория Бора приписывает электронным оболочкам К, L, М, N и далее в порядке латинского алфавита, в соответствии с повышающимся энергетическим уровнем оболочек, главное квантовое число п , равное 1, 2, 3, 4 и т.д. В последующем оказалось, что электронные оболочки расщеплены на подоболочки, и каждой свойствен определенный квантовый энергетический уровень, характеризующийся орбитальным квантовым числом l .

Согласно принципу неопределенности Гейзенберга, точно определить местонахождение электрона в любой определенный момент времени невозможно. Однако можно указать вероятность этого. Область пространства, в которой вероятность нахождения электрона наиболее высока, называется орбиталью . Электроны могут занимать 4 орбитали разных типов, которые называются s- (sharp — резкая), р- (principal — главная), d- (diffuse — диффузная) и f- (fundamental — базовая) орбитали. Раньше этими буквами обозначали спектральные линии водорода, но в настоящее время их используют только в качестве символов, без расшифровки.

Орбитали можно представить в виде трехмерных поверхностей. Обычно области пространства, ограниченные этими поверхностями, выбирают так, чтобы вероятность обнаружения внутри них электрона составляла 95%. Схематическое изображение орбиталей представлено на рис. 1.

Рис. 1.

s-Орбиталь имеет сферическую форму, р-орбиталь — форму гантели, d-opбиталь — форму двух гантелей, перекрещивающихся в двух узловых взаимно перпендикулярных плоскостях, s-подоболочка состоит из одной s-орбитали, р-подоболочка — из 3 р-орбиталей, d-подоболочка — из 5 d-орбиталей.

Если не прикладывать магнитное поле, все орбитали одной подоболочки будут иметь одинаковую энергию; их в этом случае называют вырожденными . Однако во внешнем магнитном поле подоболочки расщепляются (эффект Зеемана ). Этот эффект возможен для всех орбиталей, кроме s-орбитали. Он характеризуется магнитным квантовым числом т . Эффект Зеемана используют в современных атомно-абсорбционных спектрофотометрах(ААСФ) для увеличения их чувствительности и снижения предела обнаружения при элементных анализах.

Для биологии и медицины существенно, что орбитали одной симметрии, то есть с одинаковыми числами l и т , но с разным значением главного квантового числа (например, орбитали 1s, 2s, 3s, 4s), различаются по своему относительному размеру. Объем внутреннего пространства электронных орбита-лей больше у атомов с большим значением п . Увеличение объема орбитали сопровождается ее разрыхлением. При комплексообразоваиии размер атома играет важную роль, поскольку определяет структуру координационных соединений. В табл. 1 приведено соотношение количества электронов и главного квантового числа.

Таблица 1. Количество электронов при разных значениях квантового числа п

Помимо трех названных квантовых чисел, характеризующих свойства электронов каждого атома, имеется еще одно — спиновое квантовое число s , характеризующее не только электроны, но и ядра атомов.

Медицинская бионеорганика. Г.К. Барашков

Согласно принципу неопределенности Гейзенберга, положение и момент электрона не поддаются одновременному определению с абсолютной точностью. Однако, несмотря на невозможность точного определения положения электрона, можно указать вероятность нахождения электрона в определенном положении в любой момент времени. Область пространства, в которой высока вероятность обнаружения электрона, называется орбиталью. Понятие «орбиталь» не следует отождествлять с понятием орбита, которое используется в теории Бора. Под орбитой в теории Бора понимается траектория (путь) электрона вокруг ядра.

Электроны могут занимать орбитали четырех разных типов, которые называются s-, р-, d- и f-орбиталями. Эти орбитали могут быть представлены трехмерными ограничивающими их поверхностями. Области пространства, ограниченные этими поверхностями, обычно выбираются так, чтобы вероятность обнаружения внутри них одного электрона составляла 95%. На рис. 1.18 схематически изображена форма s- и -орбиталей. s-Орбиталь имеет сферическую форму, а -орбитали - форму гантелей.

Поскольку электрон имеет отрицательный заряд, его орбиталь может рассматриваться как некоторое распределение заряда. Такое распределение принято называть электронным облаком (рис. 1.19).

Рис. 1.18. Форма s- и p-орбиталей.

Рис. 1.19. Электронное облако в поперечном разрезе. Окружностью представлена область вокруг ядра, в пределах которой вероятность нахождения электрона равна 95%.

Состав атома.

Атом состоит из атомного ядра и электронной оболочки .

Ядро атома состоит из протонов (p + ) и нейтронов (n 0). У большинства атомов водорода ядро состоит из одного протона.

Число протонов N (p + ) равно заряду ядра (Z ) и порядковому номеру элемента в естественном ряду элементов (и в периодической системе элементов).

N (p +) = Z

Сумма числа нейтронов N (n 0), обозначаемого просто буквой N , и числа протонов Z называется массовым числом и обозначается буквой А .

A = Z + N

Электронная оболочка атома состоит из движущихся вокруг ядра электронов (е -).

Число электронов N (e -) в электронной оболочке нейтрального атома равно числу протонов Z в его ядре.

Масса протона примерно равна массе нейтрона и в 1840 раз больше массы электрона, поэтому масса атома практически равна массе ядра.

Форма атома - сферическая. Радиус ядра примерно в 100000 раз меньше радиуса атома.

Химический элемент - вид атомов (совокупность атомов) с одинаковым зарядом ядра (с одинаковым числом протонов в ядре).

Изотоп - совокупность атомов одного элемента с одинаковым числом нейтронов в ядре (или вид атомов с одинаковым числом протонов и одинаковым числом нейтронов в ядре).

Разные изотопы отличаются друг от друга числом нейтронов в ядрах их атомов.

Обозначение отдельного атома или изотопа: (Э - символ элемента), например: .


Строение электронной оболочки атома

Атомная орбиталь - состояние электрона в атоме. Условное обозначение орбитали - . Каждой орбитали соответствует электронное облако.

Орбитали реальных атомов в основном (невозбужденном) состоянии бывают четырех типов: s , p , d и f .

Электронное облако - часть пространства, в которой электрон можно обнаружить с вероятностью 90 (или более) процентов.

Примечание : иногда понятия "атомная орбиталь" и "электронное облако" не различают, называя и то, и другое "атомной орбиталью".

Электронная оболочка атома слоистая. Электронный слой образован электронными облаками одинакового размера. Орбитали одного слоя образуют электронный ("энергетический") уровень , их энергии одинаковы у атома водорода, но различаются у других атомов.

Однотипные орбитали одного уровня группируются в электронные (энергетические) подуровни:
s -подуровень (состоит из одной s -орбитали), условное обозначение - .
p -подуровень (состоит из трех p
d -подуровень (состоит из пяти d -орбиталей), условное обозначение - .
f -подуровень (состоит из семи f -орбиталей), условное обозначение - .

Энергии орбиталей одного подуровня одинаковы.

При обозначении подуровней к символу подуровня добавляется номер слоя (электронного уровня), например: 2s , 3p , 5d означает s -подуровень второго уровня, p -подуровень третьего уровня, d -подуровень пятого уровня.

Общее число подуровней на одном уровне равно номеру уровня n . Общее число орбиталей на одном уровне равно n 2 . Соответственно этому, общее число облаков в одном слое равно также n 2 .

Обозначения: - свободная орбиталь (без электронов), - орбиталь с неспаренным электроном, - орбиталь с электронной парой (с двумя электронами).

Порядок заполнения электронами орбиталей атома определяется тремя законами природы (формулировки даны упрощенно):

1. Принцип наименьшей энергии - электроны заполняют орбитали в порядке возрастания энергии орбиталей.

2. Принцип Паули - на одной орбитали не может быть больше двух электронов.

3. Правило Хунда - в пределах подуровня электроны сначала заполняют свободные орбитали (по одному), и лишь после этого образуют электронные пары.

Общее число электронов на электронном уровне (или в электронном слое) равно 2n 2 .

Распределение подуровней по энергиям выражается рядом (в прядке увеличения энергии):

1s , 2s , 2p , 3s , 3p , 4s , 3d , 4p , 5s , 4d , 5p , 6s , 4f , 5d , 6p , 7s , 5f , 6d , 7p ...

Наглядно эта последовательность выражается энергетической диаграммой:

Распределение электронов атома по уровням, подуровням и орбиталям (электронная конфигурация атома) может быть изображена в виде электронной формулы, энергетической диаграммы или, упрощенно, в виде схемы электронных слоев ("электронная схема").

Примеры электронного строения атомов:

Валентные электроны - электроны атома, которые могут принимать участие в образовании химических связей. У любого атома это все внешние электроны плюс те предвнешние электроны, энергия которых больше, чем у внешних. Например: у атома Ca внешние электроны - 4s 2 , они же и валентные; у атома Fe внешние электроны - 4s 2 , но у него есть 3d 6 , следовательно у атома железа 8 валентных электронов. Валентная электронная формула атома кальция - 4s 2 , а атома железа - 4s 2 3d 6 .

Периодическая система химических элементов Д. И. Менделеева
(естественная система химических элементов)

Периодический закон химических элементов (современная формулировка): свойства химических элементов, а также простых и сложных веществ, ими образуемых, находятся в периодической зависимости от значения заряда из атомных ядер.

Периодическая система - графическое выражение периодического закона.

Естественный ряд химических элементов - ряд химических элементов, выстроенных по возрастанию числа протонов в ядрах их атомов, или, что то же самое, по возрастанию зарядов ядер этих атомов. Порядковый номер элемента в этом ряду равен числу протонов в ядре любого атома этого элемента.

Таблица химических элементов строится путем "разрезания" естественного ряда химических элементов на периоды (горизонтальные строки таблицы) и объединения в группы (вертикальные столбцы таблицы) элементов, со сходным электронным строением атомов.

В зависимости от способа объединения элементов в группы таблица может быть длиннопериодной (в группы собраны элементы с одинаковым числом и типом валентных электронов) и короткопериодной (в группы собраны элементы с одинаковым числом валентных электронов).

Группы короткопериодной таблицы делятся на подгруппы (главные и побочные ), совпадающие с группами длиннопериодной таблицы.

У всех атомов элементов одного периода одинаковое число электронных слоев, равное номеру периода.

Число элементов в периодах: 2, 8, 8, 18, 18, 32, 32. Большинство элементов восьмого периода получены искусственно, последние элементы этого периода еще не синтезированы. Все периоды, кроме первого начинаются с элемента, образующего щелочной металл (Li, Na, K и т. д.), а заканчиваются элементом, образующим благородный газ (He, Ne, Ar, Kr и т. д.).

В короткопериодной таблице - восемь групп, каждая из которых делится на две подгруппы (главную и побочную), в длиннопериодной таблице - шестнадцать групп, которые нумеруются римскими цифрами с буквами А или В, например: IA, IIIB, VIA, VIIB. Группа IA длиннопериодной таблицы соответствует главной подгруппе первой группы короткопериодной таблицы; группа VIIB - побочной подгруппе седьмой группы: остальные - аналогично.

Характеристики химических элементов закономерно изменяются в группах и периодах.

В периодах (с увеличением порядкового номера)

  • увеличивается заряд ядра,
  • увеличивается число внешних электронов,
  • уменьшается радиус атомов,
  • увеличивается прочность связи электронов с ядром (энергия ионизации),
  • увеличивается электроотрицательность,
  • усиливаются окислительные свойства простых веществ ("неметалличность"),
  • ослабевают восстановительные свойства простых веществ ("металличность"),
  • ослабевает основный характер гидроксидов и соответствующих оксидов,
  • возрастает кислотный характер гидроксидов и соответствующих оксидов.

В группах (с увеличением порядкового номера)

  • увеличивается заряд ядра,
  • увеличивается радиус атомов (только в А-группах),
  • уменьшается прочность связи электронов с ядром (энергия ионизации; только в А-группах),
  • уменьшается электроотрицательность (только в А-группах),
  • ослабевают окислительные свойства простых веществ ("неметалличность"; только в А-группах),
  • усиливаются восстановительные свойства простых веществ ("металличность"; только в А-группах),
  • возрастает основный характер гидроксидов и соответствующих оксидов (только в А-группах),
  • ослабевает кислотный характер гидроксидов и соответствующих оксидов (только в А-группах),
  • снижается устойчивость водородных соединений (повышается их восстановительная активность; только в А-группах).

Задачи и тесты по теме "Тема 9. "Строение атома. Периодический закон и периодическая система химических элементов Д. И. Менделеева (ПСХЭ)"."

  • Периодический закон - Периодический закон и строение атомов 8–9 класс
    Вы должны знать: законы заполнения орбиталей электронами (принцип наименьшей энергии, принцип Паули, правило Хунда), структуру периодической системы элементов.

    Вы должны уметь: определять состав атома по положению элемента в периодической системе, и, наоборот, находить элемент в периодической системе, зная его состав; изображать схему строения, электронную конфигурацию атома, иона, и, наоборот, определять по схеме и электронной конфигурации положение химического элемента в ПСХЭ; давать характеристику элемента и образуемых им веществ по его положению в ПСХЭ; определять изменения радиуса атомов, свойств химических элементов и образуемых ими веществ в пределах одного периода и одной главной подгруппы периодической системы.

    Пример 1. Определите количество орбиталей на третьем электронном уровне. Какие это орбитали?
    Для определения количества орбиталей воспользуемся формулой N орбиталей = n 2 , где n - номер уровня. N орбиталей = 3 2 = 9. Одна 3s -, три 3p - и пять 3d -орбиталей.

    Пример 2. Определите, у атома какого элемента электронная формула 1s 2 2s 2 2p 6 3s 2 3p 1 .
    Для того, чтобы определить, кокой это элемент, надо выяснить его порядковый номер, который равен суммарному числу электронов атома. В данном случае: 2 + 2 + 6 + 2 + 1 = 13. Это алюминий.

    Убедившись, что все необходимое усвоено, переходите к выполнению заданий. Желаем успехов.


    Рекомендованная литература:
    • О. С. Габриелян и др. Химия 11 кл. М., Дрофа, 2002;
    • Г. Е. Рудзитис, Ф. Г. Фельдман. Химия 11 кл. М., Просвещение, 2001.

Орбитали атома вододрода.

Когда рассматриваются волновые функции для электронов в отдельных атомах, эти функции называют атомными орбиталями (сокращенно АО). Экспериментальные доказательства существования атомных орбиталей можно получить из атомных спектров. Например, при электрическом разряде в газообразном водороде молекулы Н 2 диссоциируют на атомы, а атомы испускают свет строго определенных частот, которые группируются сериями: в видимой области (так называемая серия Бальмера), ультрафиолетовой (серия Лаймана), инфракрасной (серия Пашена). Еще в доквантовый период было замечено, что все серии удовлетворяют одному простому уравнению:

атомный молекулярный орбиталь квантование

Атом водорода трехмерен, поэтому уравнение Шредингера должно включать кинетическую энергию во всех трех измерениях и будет иметь несколько более сложный вид, чем представленное в разделе 1.1 этой главы уравнение для одномерного движения. При его решении с наложением граничных условий, которые вытекают из вероятностной интерпретации волновой функции, были получены следующие выводы.

1. Необходимо принять, что существуют три безразмерных квантовых числа, которые обозначают символами п, / и т. Появление квантового числа п вызвано тем, что электрон может менять свое расстояние от ядра. Квантовые

числа / и т связаны с угловым моментом количества движения электрона, который может вращаться вокруг ядра в трех измерениях. Число / характеризует величину углового момента, а число т - ориентацию углового момента в пространстве, так как угловой момент - векторная величина. Допустимыми значениями квантовых чисел, которые вытекают из граничных условий, являются n - 1, 2, 3.;

2. Энергия электрона, вообще говоря, должна зависеть от всех трех квантовых чисел, или, по крайней мере, от двух, однако уникальной особенностью атома водорода (но не других атомов) является то, что энергия электрона зависит только от п. По этой причине п называется главным квантовым числом. (Так, для п = 3l может принимать значения 0, 1 и 2, но энергия электрона остается постоянной.) Разрешенными энергиями будут энергии, имеющие вид Еп = R/п2.


Атомные орбит али атома водорода имеют очень важное значение, так как они показывают, как распределен электрон (или электронная плотность) в пространстве. Амплитуда АО ш (r) различна в разных местах пространства, а вероятность нахождения электрона в некоторой бесконечно малой области dф вокруг точки r составляет. Пространственное распределение электрона можно изобразить путем указания величины с помощью разной плотности штриховки на диаграмме. Распределение плотности в некоторых АО водорода представлено на рис.1.1

Орбиталь основного состояния атома водорода очень проста: она сферически симметрична и ее плотность экспоненциально спадает по мере удаления от ядра. Следовательно, наиболее вероятно найти электрон около ядра, где ц/ и, таким образом, у? ^ максимальны. Это согласуется спред став легшем, что электрон для достижения наименьшей потенциальной энергии должен стремиться к ядру. Однако орбнталь не совсем "прижата" к ядру, а распространяется и на области, достаточно удаленные от него. Такая ситуация возникает вследствие того, что большое значение имеет не только потенциальная, но и кинетическая энергия электрона. Последнюю нельзя представить как кинетическую энергию движения по орбите вокруг ядра, которая приводит к появлению центробежной силы, удерживающей электрон вдали от ядра, поскольку угловой момент электрона в основном состоянии атома водорода равен нулю. (При п= 1 может быть только одно квантовое число величины углового момента: /=0, и, следовательно, равна нулю.) Таким образом, в классическом понимании электрон в основном состоянии атома водорода как бы не вращается вокруг ядра, а просто качается вдоль радиуса. С этим и связана его кинетическая энергия. С точки зрения квантовой теории, кинетическая энергия электрона связана с длиной волны электрона, распространяющейся в радиальном направлении. Если орбнталь "поджимается" к ядру, длина волны в радиальном направлении неизбежно уменьшается, и поэтому кинетическая энергия возрастает (разд.1.1). Реальная орбнталь является результатом компромисса между умеренно низкой потенциальной энергией и умеренно высокой кинетической энергией. Ближе к ядру электронная плотность выше, но она имеется и на удаленном от ядра расстоянии.

Рис.1.1

Все орбитали с нулевым угловым моментом называются s-орбиталями. Орбиталь низшей энергии называется 1s-орбиталью. Если п= 2 и 7=0, то это 2s-орбиталь. Ее энергия выше, чем энергия 1s-орбитали, по двум причинам. Во-первых, она имеет радиальный узел (рис.1.2), представляющий собой сферическую поверхность, внутри и снаружи которой волновая функция имеет разные знаки, и на самой этой поверхности электронная плотность равна нулю. Появление узлов на любой орбитали повышает энергию электрона, занимающего эту орбиталь, и чем больше узлов, тем энергия орбитали выше.

Это связано с тем, что с увеличением числа узлов длина волны электрона становится короче, т.е. большее число полуволи приходится на одну и ту же область пространства и поэтому его кинетическая энергия возрастает. Во - вторых, повышение энергии 2s-орбитали по сравнению с 1s-орбиталью связано с тем, что 2s-орбиталь простирается на расстояние, более далекое от ядра, и поэтому потенциальная энергия электрона на ней выше, чем на 1s-орбитали. Аналогичные замечания можно сделать и относительно более высоко лежащих s-орбиталей: и т.д.

Рис.1.2

Орбиталь с п= 1 не имеет узлов. Орбитали с п=2 имеют один узел, с п=3 - два узла и т.д. Относительно операции симметрии инверсии (центр инверсии совпадает с центром ядра) все s-орбитали симметричны, все s-орбитали антисимметричны, все s-орбитали симметричны и т.д.

Если n=0, единственным значением, разрешенным для l , является нуль, но если n=2, квантовое число орбитального углового момента может принимать значения 0 (2л-орбит аль) или 1. Если n= 1, атомные орбитали носят название р- орбнгалей. При n= 2 и l = 1 мы имеем 2р-орбнталь. Она отличается от 2s-орбнтали тем, что занимающий ее электрон обладает орбитальным угловым моментом величиной (2) Угловой момент является следствием наличия углового узла (рис.1.2), который, как говорят, "вводит кривизну в угловое изменение волновой функции" (шар превращается в гантель). Наличие орбитального углового момента оказывает сильное влияние на радиальную форму орбитали. В то время как все 5-орбит али у ядра имеют ненулевое значение,1s-орбитали там отсутствуют. Это можно представить как отбрасывание электрона от ядра орбитальным угловым моментом. Сила кулоновского притяжения электрона к ядру пропорциональна 1 /г где г - расстояние от ядра, а центробежная сила, отталкивающая электроны от ядра, пропорциональна r 3 (3 - угловой момент). Поэтому, если угловой момент ^0, при очень малых г центробежная сила превосходит кулоновскую. Этот центробежный эффект проявляется также в АО с l =2, которые называются 1s-орбиталями, l =3 (s-орбитали) и более высоких орбиталях (Ј-, /? - , у-орбитали). Все эти орбит али, из-за того, что /^0, имеют нулевую амплитуду у ядра и, следовательно, вероятность обнаружить там электроны равна нулю.

У 2/? - орбнтали нет радиального узла, но зато 3/? - орбиталь его имеет. Эскизы нижних атомных орбит алей, иллюстрирующие свойства и симметрию АО (но не вероятностное распределение электрона внутри орбитали, как на рис.1.1), приведены на рис.1.2 Светлые и затемненные области - это места, где волновая функция имеет разные знаки. Поскольку выбор знака произволен, безразлично, будем ли мы соотносить затемненные области с положительным, а светлые области с отрицательным знаком волновой функции, или наоборот. Граница между светлой и темной областями орбнталей - это узел, т.е. то место, где волновая функция равна нулю, или, другими словами, место, где волновая функция меняет знак на противоположный. Чем больше узлов, тем выше энергия электрона, занимающего данную АО.

Поскольку для орбиталей l=0, квантовое число т может принимать значения +1, 0 и - 1. Разные значения т соответствуют орбнталям с различными ориеитациями орбитального углового момента, р-Орбиталь с т=0 имеет нулевую проекцию углового момента на ось 2 (рис.1.2), и по этой причине ее называют р 2 -орбиталью. Вид р 2 - орбнтали (см. рис.1.1 и 1.2) говорит о том, что электронная плотность "собрана в заводи" вдоль оси 2. В этом случае существует горизонтальная узловая плоскость, проходящая через ядро, и вероятность найти электрон в этой плоскости равна нулю. Две другие р - орбнтали можно представить аналогичными картинами с ориентацией "лопастей" вдоль осей хну (см. рис.1.1), поэтому они называются р х и р у - орбнталями.

Если /? =3, то / может принимать значения 0, 1 и 2. Это прнаоднг к одной 3^-орбнгали, трем 3/? - орбнгалям и пяти 3^-орбнгалям.3б/-Орбнталей пять, поскольку при / =2 т может принимать значения 2, 1, 0, - 1 и - 2. Все Ъй - орбнтали имеют нулевую амплитуду у ядра. У них нет радиальных узлов (у 4с1 - орбнталей радиальные узлы появляются), но у каждой есть две узловые плоскости (см. рис.1.2).

Выше было сказано, что энергия электрона в атоме водорода зависит от главного квантового числа орбнтали, которую он занимает и не зависит от его орбитального углового момента. Таким образом, в атоме водорода электрон на 2л-орбнтали имеет ту же энергию, что и на любой из 2р-орбит алей. Если различные орбнтали имеют одинаковую энергию, они называются вырожденными . Вырождение атома водорода представляет собой нечто исключительное и в физике объясняется особой формой его кулоновского потенциала.

Орбитали существуют независимо от того, находится на них электрон (занятые орбитали), или отсутствует (вакантные орбитали). Атом каждого элемента, начиная с водорода и заканчивая последним полученным на сегодня элементом, имеет полный набор всех орбиталей на всех электронных уровнях. Их заполнение электронами происходит по мере увеличения порядкового номера, то есть, заряда ядра.

s -Орбитали, как было показано выше, имеют сферическую форму и, следовательно, одинаковую электронную плотность в направлении каждой оси трехмерных координат:

На первом электронном уровне каждого атома находится только одна s- орбиталь. Начиная со второго электронного уровня помимо s- орбитали появляются также три р -орбитали. Они имеют форму объемных восьмерок, именно так выглядит область наиболее вероятного местонахождения р -электрона в районе атомного ядра. Каждая р -орбиталь расположена вдоль одной из трех взаимоперпендикулярных осей, в соответствии с этим в названии р -орбитали указывают с помощью соответствующего индекса ту ось, вдоль которой располагается ее максимальная электронная плотность:

В современной химии орбиталь – определяющее понятие, позволяющее рассматривать процессы образования химических связей и анализировать их свойства, при этом внимание сосредотачивают на орбиталях тех электронов, которые участвуют в образовании химических связей, то есть, валентных электронов, обычно это электроны последнего уровня.

У атома углерода в исходном состоянии на втором (последнем) электронном уровне находится два электрона на s -орбитали (отмечены синим цветом) и по одному электрону на двух р -орбиталях (отмечены красным и желтым цветом), третья орбиталь – р z -вакантная:

Гибридизация.

В том случае, когда атом углерода участвует в образовании насыщенных соединений (не содержащих кратных связей), одна s- орбиталь и три р -орбитали объединяются, образуя новые орбитали, представляющие собой гибриды исходных орбиталей (процесс называют гибридизацией). Количество гибридных орбиталей всегда равно количеству исходных, в данном случае, четыре. Получившиеся орбитали-гибриды одинаковы по форме и внешне напоминают асимметричные объемные восьмерки:

Вся конструкция оказывается как бы вписанной в правильный тетраэдр – призма, собранная из правильных треугольников. При этом орбитали-гибриды располагаются вдоль осей такого тетраэдра, угол между любыми двумя осями – 109°. Четыре валентных электрона углерода располагаются на этих гибридных орбиталях:

Участие орбиталей в образовании простых химических связей.

Свойства электронов, разместившихся на четырех одинаковых орбиталях, эквивалентны, соответственно, будут эквивалентны химические связи, образованные с участием этих электронов при взаимодействии с атомами одного типа.

Взаимодействие атома углерода с четырьмя атомами водорода сопровождается взаимоперекрыванием вытянутых гибридных орбиталей углерода со сферическими орбиталями водородов. На каждой орбитали находится по одному электрону, в результате перекрывания каждая пара электронов начинает перемещаться по объединенной – молекулярной орбитали.

Гибридизация приводит лишь к изменению формы орбиталей внутри одного атома, а перекрывание орбиталей двух атомов(гибридных или обычных)приводит к образованию химической связи между ними. В данном случае (см . рисунок, помещенный ниже) максимальная электронная плотность располагается вдоль линии, связывающей два атома. Такую связь называют s -связью.

В традиционном написании структуры образовавшегося метана вместо перекрывающихся орбиталей используют символ валентной черты. Для объемного изображения структуры валентность, направленную от плоскости чертежа к зрителю показывают в виде сплошной клиновидной линии, а валентность, уходящую за плоскость рисунка – в виде штриховой клиновидной линии:

Таким образом, структура молекулы метана определяется геометрией гибридных орбиталей углерода:

Образование молекулы этана аналогично показанному выше процессу, отличие состоит в том, что при взаимоперекрывании гибридных орбиталей двух атомов углерода происходит образование С-С – связи:

Геометрия молекулы этана напоминает метан, валентные углы 109°, что определяется пространственным расположением гибридных орбиталей углерода:

Участие орбиталей в образовании кратных химических связей.

Молекула этилена образована также с участием орбиталей-гибридов, однако в гибридизации участвуют одна s -орбиталь и только две р -орбитали (р х и р у ), третья орбиталь – p z , направленная вдоль оси z , в образовании гибридов не участвует. Из исходных трех орбиталей возникают три гибридных орбитали, которые располагаются в одной плоскости, образуя трехлучевую звезду, углы между осями – 120°:

Два атома углерода присоединяют четыре атома водорода, а также соединяются между собой, образуя s -связь С-С:

Две орбитали p z , не участвовавшие в гибридизации, взаимоперекрываются, их геометрия такова, что перекрывание происходит не по линии связи С-С, а выше и ниже ее. В результате образуются две области с повышенной электронной плотностью, где помещаются два электрона (отмечены синим и красным цветом), участвующие в образовании этой связи. Таким образом, образуется одна молекулярная орбиталь, состоящая из двух областей, разделенных в пространстве. Связь, у которой максимальная электронная плотность расположена вне линии, связывающей два атома, называют p -связью:

Вторая валентная черта в обозначении двойной связи, широко используемая для изображения ненасыщенных соединений уже не одно столетие, в современном понимании подразумевает наличие двух областей с повышенной электронной плотностью, расположенных по разные стороны линии связи С-С.

Структура молекулы этилена задана геометрией гибридных орбиталей, валентный угол Н-С-Н – 120°:

При образовании ацетилена в гибридизации участвует одна одна s -орбиталь и одна р x -орбиталь (орбитали p y и p z , в образовании гибридов не участвуют). Две образовавшиеся гибридные орбитали располагаются на одной линии, вдоль оси х :

Взаимоперекрывание орбиталей-гибридов друг с другом и с орбиталями атомов водорода приводит к образованию s -связей С-С и С-Н, изображаемых с помощью простой валентной черты:

Две пары оставшихся орбиталей p y и p z взаимоперекрываются. На рисунке, приведенном ниже, цветными стрелками показано, что из чисто пространственных соображений наиболее вероятно перекрывание орбиталей с одинаковыми индексами х-х и у-у . В результате образуются две p -связи, окружающие простую s -связь С-С:

В итоге молекула ацетилена имеет палочкообразную форму:

У бензола остов молекулы собран из атомов углерода, имеющих гибридные орбитали, составленные из одной s - и двух р -орбиталей, расположенные в форме трехлучевой звезды (как у этилена), р -орбитали, не участвующие в гибридизации, показаны полупрозрачными:

В образовании химических связей могут также участвовать вакантные, то есть, не содержащие электронов орбитали ().

Орбитали высоких уровней.

Начиная с четвертого электронного уровня, у атомов появляются пять d -орбиталей, их заполнение электронами происходит у переходных элементов, начиная со скандия. Четыре d -орбитали имеют форму объемных четырехлистников, называемых иногда «клеверным листом», они отличаются лишь ориентацией в пространстве, пятая d -орбиталь представляет собой объемную восьмерку, продетую в кольцо:

d -Орбитали могут образовывать гибриды с s- и p- орбиталями. Параметры d -орбиталей обычно используют при анализе строения и спектральных свойств в комплексах переходных металлов.

Начиная с шестого электронного уровня, у атомов появляются семь f -орбиталей, их заполнение электронами происходит в атомах лантаноидов и актиноидов. f -Орбитали имеют довольно сложную конфигурацию, ниже на рисунке показана форма трех из семи таких орбиталей, имеющих одинаковую форму и ориентированных в пространстве различным образом:

f -Орбитали весьма редко используют при обсуждении свойств различных соединений, поскольку расположенные на них электроны практически не принимают участия в химических превращениях..

Перспективы.

На восьмом электронном уровне находится девять g -орбиталей. Элементы, содержащие электроны на этих орбиталях, должны появится в восьмом периоде, пока они недоступны (в ближайшее время ожидается получение элемента № 118, последнего элемента седьмого периода Периодической системы, его синтез проводят в Объединенном институте ядерных исследований в Дубне).

Форма g -орбиталей, вычисленная методами квантовой химии, еще более сложная, чем у f -орбиталей, область наиболее вероятного местонахождения электрона в данном случае выглядит весьма причудливо. Ниже показан внешний вид одной из девяти таких орбиталей:

В современной химии представления об атомных и молекулярных орбиталях широко используют при описании строения и реакционных свойств соединений, также при анализе спектров различных молекул, в некоторых случаях – для прогнозирования возможности протекания реакций.

Михаил Левицкий

Статьи по теме: