Диапазон спектра излучения. Урок-семинар "спектр электромагнитных излучений"

Приведена в отдельной статье;

  • Энергию фотона (кванта электромагнитного поля).
  • Прозрачность вещества для гамма-лучей, в отличие от видимого света, зависит не от химической формы и агрегатного состояния вещества, а в основном от заряда ядер, входящих в состав вещества, и от энергии гамма-квантов. Поэтому поглощающую способность слоя вещества для гамма-квантов в первом приближении можно охарактеризовать его поверхностной плотностью (в г/см²). Длительное время считалось, что создание зеркал и линз для γ-лучей невозможно, однако, согласно последним исследованиям в данной области, преломление γ-лучей возможно. Это открытие, возможно, означает создание нового раздела оптики - γ-оптики .

    Резкой нижней границы для гамма-излучения не существует, однако обычно считается, что гамма-кванты излучаются ядром, а рентгеновские кванты - электронной оболочкой атома (это лишь терминологическое различие, не затрагивающее физических свойств излучения).

    Рентгеновское излучение

    • от 0,1 нм = 1 Å (12 400 эВ) до 0,01 нм = 0,1 Å (124 000 эВ) - жёсткое рентгеновское излучение . Источники: некоторые ядерные реакции , электронно-лучевые трубки .
    • от 10 нм (124 эВ) до 0,1 нм = 1 Å (12 400 эВ) - мягкое рентгеновское излучение . Источники: электронно-лучевые трубки, тепловое излучение плазмы.

    Рентгеновские кванты излучаются в основном при переходах электронов в электронной оболочке тяжёлых атомов на низколежащие орбиты. Вакансии на низколежащих орбитах создаются обычно электронным ударом. Рентгеновское излучение, созданное таким образом, имеет линейчатый спектр с частотами, характерными для данного атома (см. характеристическое излучение); это позволяет, в частности, исследовать состав веществ (рентгено-флюоресцентный анализ). Тепловое , тормозное и синхротронное рентгеновское излучение имеет непрерывный спектр.

    В рентгеновских лучах наблюдается дифракция на кристаллических решётках, поскольку длины электромагнитных волн на этих частотах близки к периодам кристаллических решёток. На этом основан метод рентгено-дифракционного анализа.

    Ультрафиолетовое излучение

    Диапазон: От 400 нм (3,10 эВ) до 10 нм (124 эВ)

    Наименование Аббревиатура Длина волны в нанометрах Количество энергии на фотон
    Ближний NUV 400 - 300 3,10 - 4,13 эВ
    Средний MUV 300 - 200 4,13 - 6,20 эВ
    Дальний FUV 200 - 122 6,20 - 10,2 эВ
    Экстремальный EUV, XUV 121 - 10 10,2 - 124 эВ
    Вакуумный VUV 200 - 10 6,20 - 124 эВ
    Ультрафиолет А, длинноволновой диапазон, Чёрный свет UVA 400 - 315 3,10 - 3,94 эВ
    Ультрафиолет B (средний диапазон) UVB 315 - 280 3,94 - 4,43 эВ
    Ультрафиолет С, коротковолновой, гермицидный диапазон UVC 280 - 100 4,43 - 12,4 эВ

    Оптическое излучение

    Излучение оптического диапазона (видимый свет и ближнее инфракрасное излучение [ ]) свободно проходит сквозь атмосферу, может быть легко отражено и преломлено в оптических системах. Источники: тепловое излучение (в том числе Солнца), флюоресценция, химические реакции, светодиоды.

    Цвета видимого излучения, соответствующие монохроматическому излучению , называются спектральными . Спектр и спектральные цвета можно увидеть при прохождении узкого светового луча через призму или какую-либо другую преломляющую среду. Традиционно, видимый спектр делится, в свою очередь, на диапазоны цветов:

    Цвет Диапазон длин волн, нм Диапазон частот, ТГц Диапазон энергии фотонов, эВ
    Фиолетовый 380-440 790-680 2,82-3,26
    Синий 440-485 680-620 2,56-2,82
    Голубой 485-500 620-600 2,48-2,56
    Зелёный 500-565 600-530 2,19-2,48
    Жёлтый 565-590 530-510 2,10-2,19
    Оранжевый 590-625 510-480 1,98-2,10
    Красный 625-740 480-405 1,68-1,98

    Ближнее инфракрасное излучение занимает диапазон от 207 ТГц (0,857 эВ) до 405 ТГц (1,68 эВ). Верхняя граница определяется способностью человеческого глаза к восприятию красного цвета, различной у разных людей. Как правило, прозрачность в ближнем инфракрасном излучении соответствует прозрачности в видимом свете.

    Инфракрасное излучение

    Инфракрасное излучение расположено между видимым светом и терагерцовым излучением. Диапазон: от 2000 мкм (150 ГГц) до 740 нм (405 ТГц).

    Имеется целый ряд типов электромагнитного излучения, начиная с радиоволн и заканчивая гамма-лучами. Электромагнитные лучи всех типов распространяются в вакууме со скоростью света и отличаются друг от друга только длинами волн

    1859 спектроскопия

    1864 уравнения максвелла

    1864 СПЕКТР

    ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ

    1900 излучение

    Черного тела

    После появления уравнений максвелла стало ясно, что они предсказывают существование неизвестного науке природного явления - поперечных электромагнитных волн, представляющих собой распространяющиеся в пространстве со скоростью света колебания взаимосвязанных электрического и магнитного полей. Сам Джеймс Кларк Максвелл первым и указал научному сообществу на это следствие из выведенной им системы уравнений. В этом преломлении скорость распространения электромагнитных волн в вакууме оказалась столь важной и фундаментальной вселенской константой, что ее обозначили отдельной буквой с в отличие от всех прочих скоростей, которые принято обозначать буквой v.

    Сделав это открытие, Максвелл сразу же определил, что видимый свет является «всего лишь» разновидностью электромагнитных волн. К тому времени были известны длины световых волн видимой части спектра - от 400 нм (фиолетовые лучи) до 800 нм (красные лучи). (Нанометр - единица длины, равная одной миллиардной метра, которая в основном используется в атомной физике и физике лучей; 1 нм = 10 -9 м.) Всем цветам радуги соответствуют различные длины волн, лежащие в этих весьма узких пределах. Однако в уравнениях Максвелла не содержалось никаких ограничений на возможный диапазон длин электромагнитных волн. Когда стало ясно, что должны существовать электромагнитные волны самой разной длины, фактически сразу же было выдвинуто сравнение по поводу того, что человеческий глаз различает столь узкую полосу их длин и частот: человека уподобили слушателю симфонического концерта, слух которого способен улавливать только скрипичную партию, не различая всех остальных звуков.



    Вскоре после предсказания Максвеллом существования электромагнитных волн других диапазонов спектра последовала серия открытий, подтвердивших его правоту. Первыми в 1888 году были открыты радиоволны - сделал это немецкий физик Генрих Герц (Heinrich Hertz, 1857-1894). Единственная разница между радиоволнами и светом состоит в том, что длина радиоволн может колебаться в диапазоне от нескольких дециметров до тысяч километров. Согласно теории Максвелла, причиной возникновения электромагнитных волн является ускоренное движение электрических зарядов. Колебания электронов под воздействием переменного электрического напряжения в антенне радиопередатчика создают электромагнитные волны, распространяющиеся в земной атмосфере. Все другие типы электромагнитных волн также возникают в результате различных видов ускоренного движения электрических зарядов.

    Подобно световым волнам, радиоволны могут практически без потерь распространяться на большие расстояния в земной атмосфере, и это делает их полезнейшими носителями закодированной информации. Уже в начале 1894 года-всего через пять с небольшим лет после открытия радиоволн - итальянский инженер-физик Гуль-ельмо Маркони (Guglielmo Marconi, 1874-1937) сконструировал

    10" 10" 10* 10" 1

    10 10* 10*

    1СГ 5 10* 10"" 10^ 10*

    - 10"" Рентгеновские

    лучи - 10 -і*

    - 10""

    - 10"

    - 1(Г"

    - 1<Г"

    Гамма-лучи

    Электромагнитные волны образуют сплошной спектр длин волн и энергий (частот), подразделяемый на условные диапазоны - от радиоволн до гамма-лучей

    первый работающий беспроволочный телеграф - прообраз современного радио, - за что в 1909 году был удостоен Нобелевской премии.

    После того как было впервые экспериментально подтверждено предсказываемое уравнениями Максвелла существование электромагнитных волн за пределами видимого спектра, остальные ниши спектра заполнились весьма быстро. Сегодня открыты электромагнитные волны всех без исключения диапазонов, и практически все они находят широкое и полезное применение в науке и технике. Частоты волн и энергии соответствующих им квантов электромагнитного излучения (см. постоянная планка) возрастают с уменьшением длины волны. Совокупность всех электромагнитных волн образует так называемый сплошной спектр электромагнитного излучения. Он подразделяется на следующие диапазоны (в порядке увеличения частоты и уменьшения длины волн):

    Радиоволны

    Как уже отмечалось, радиоволны могут значительно различаться по длине - от нескольких сантиметров до сотен и даже тысяч километров, что сопоставимо с радиусом земного шара (около 6400 км). Волны всех радиодиапазонов широко используются в технике - дециметровые и ультракороткие метровые волны применяются для телевещания и радиовещания в диапазоне ультракоротких волн с частотной модуляцией (УКВ/БЫ), обеспечивая высокое качество приема сигнала в пределах зоны прямого распространения волн. Радиоволны метрового и километрового диапазона применяются для радиовещания и радиосвязи на больших расстояниях с использованием амплитудной модуляции (АМ), которая, хотя и в ущерб качеству сигнала, обеспечивает его передачу на сколь угодно большие расстояния в пределах Земли благодаря отражению волн от ионосферы планеты. Впрочем, сегодня этот вид связи отходит в прошлое благодаря развитию спутниковой связи. Волны дециметрового диапазона не могут огибать земной горизонт подобно метровым волнам, что ограничивает зону приема областью прямого распространения, которая, в зависимости от высоты антенны и мощности передатчика, составляет от нескольких до нескольких десятков километров. И тут на помощь приходят спутниковые ретрансляторы, берущие на себя ту роль отражателей радиоволн, которую в отношении метровых волн играет ионосфера.

    Микроволны

    Микроволны и радиоволны диапазона сверхвысоких частот (СВЧ) имеют длину от 300 мм до 1 мм. Сантиметровые волны, подобно дециметровым и метровым радиоволнам, практически не поглощаются атмосферой и поэтому широко используются в спутни

    ковой и сотовой связи и других телекоммуникационных системах. Размер типовой спутниковой тарелки как раз равен нескольким длинам таких волн.

    Более короткие СВЧ-волны также находят множество применений в промышленности и в быту. Достаточно упомянуть про микроволновые печи, которыми сегодня оснащены и промышленные хлебопекарни, и домашние кухни. Действие микроволновой печи основано на быстром вращении электронов в устройстве, которое называется клистрон. В результате электроны излучают электромагнитные СВЧ-волны определенной частоты, при которой они легко поглощаются молекулами воды. Когда вы помещаете еду в микроволновую печь, молекулы воды, содержащиеся в еде, поглощают энергию микроволн, движутся быстрее и таким образом разогревают еду. Иными словами, в отличие от обычной духовки или печи, где еда разогревается снаружи, микроволновая печь разогревает ее изнутри.

    Инфракрасные лучи

    Эта часть электромагнитного спектра включает излучение с длиной волны от 1 миллиметра до восьми тысяч атомных диаметров (около 800 нм). Лучи этой части спектра человек ощущает непосредственно кожей - как тепло. Если вы протягиваете руку в направлении огня или раскаленного предмета и чувствуете жар, исходящий от него, вы воспринимаете как жар именно инфракрасное излучение. У некоторых животных (например, у норных гадюк) есть даже органы чувств, позволяющие им определять местонахождение теплокровной жертвы по инфракрасному излучению ее тела.

    Поскольку большинство объектов на поверхности Земли излучает энергию в инфракрасном диапазоне волн, детекторы инфракрасного излучения играют немаловажную роль в современных технологиях обнаружения. Инфракрасные окуляры приборов ночного видения позволяют людям «видеть в темноте», и с их помощью можно обнаружить не только людей, но и технику, и сооружения, нагревшиеся за день и отдающие ночью свое тепло в окружающую среду в виде инфракрасных лучей. Детекторы инфракрасных лучей широко используются спасательными службами, например для обнаружения живых людей под завалами после землетрясений или иных стихийных бедствий и техногенных катастроф.

    Видимый свет

    Как уже говорилось, длины электромагнитных волн видимого светового диапазона колеблются в пределах от восьми до четырех тысяч атомных диаметров (800-400 нм). Человеческий глаз представляет собой идеальный инструмент для регистрации и анализа электромагнитных волн этого диапазона. Это обусловлено двумя причинами. Во-первых, как отмечалось, волны видимой части спектра практически беспрепятственно распространяются в прозрачной для них атмосфере. Во-вторых, температура поверхности Солнца (около 5000°С) такова, что пик энергии солнечных лучей приходится именно на видимую часть спектра. Таким образом, наш главный источник энергии излучает огромное количество энергии именно в видимом световом диапазоне, а окружающая нас среда в значительной мере прозрачна для этого излучения. Неудивительно поэтому, что человеческий глаз в процессе эволюции сформировался таким образом, чтобы улавливать и распознавать именно эту часть спектра электромагнитных волн.

    Хочу еще раз подчеркнуть, что ничего особенного с физической точки зрения в диапазоне видимых электромагнитных лучей нет. Он представляет собой всего лишь узкую полоску в широком спектре излучаемых волн (см. рисунок). Для нас он столь важен лишь постольку, поскольку человеческий мозг оснащен инструментом для выявления и анализа электромагнитных волн именно этой части спектра.

    Ультрафиолетовые лучи

    К ультрафиолетовым лучам относят электромагнитное излучение с длиной волны от нескольких тысяч до нескольких атомных диаметров (400-10 нм). В этой части спектра излучение начинает оказывать влияние на жизнедеятельность живых организмов. Мягкие ультрафиолетовые лучи в солнечном спектре (с длинами волн, приближающимися к видимой части спектра), например, вызывают в умеренных дозах загар, а в избыточных - тяжелые ожоги. Жесткий (коротковолновой) ультрафиолет губителен для биологических клеток и поэтому используется, в частности, в медицине для стерилизации хирургических инструментов и медицинского оборудования, убивая все микроорганизмы на их поверхности.

    Все живое на Земле защищено от губительного влияния жесткого ультрафиолетового излучения озоновым слоем земной атмосферы, поглощающим большую часть жестких ультрафиолетовых лучей в спектре солнечной радиации (см. озоновая дыра). Если бы не этот естественный щит, жизнь на Земле едва ли бы вышла на сушу из вод Мирового океана. Однако, несмотря на защитный озоновый слой, какая-то часть жестких ультрафиолетовых лучей достигает поверхности Земли и способна вызвать рак кожи, особенно у людей, от рождения склонных к бледности и плохо загорающих на солнце.

    Рентгеновские лучи

    Излучение в диапазоне длин волн от нескольких атомных диаметров до нескольких сот диаметров атомного ядра называется рентгеновским. Рентгеновские лучи проникают сквозь мягкие ткани организма и поэтому незаменимы в медицинской диагнос

    тике. Как и в случае с радиоволнами, временной разрыв между их открытием в 1895 году и началом практического применения, ознаменовавшимся получением в одной из парижских больниц первого рентгеновского снимка, составил считанные годы. (Интересно отметить, что парижские газеты того времени настолько увлеклись идеей, что рентгеновские лучи могут проникать сквозь одежду, что практически ничего не сообщали об уникальных возможностях их применения в медицине.)

    Гамма-лучи

    Самые короткие по длине волны и самые высокие по частоте и энергии лучи в электромагнитном спектре - это у-лучи (гамма-лучи). Они состоят из фотонов сверхвысоких энергий и используются сегодня в онкологии для лечения раковых опухолей (а точнее, для умерщвления раковых клеток). Однако их влияние на живые клетки столь губительно, что при этом приходится соблюдать крайнюю осторожность, чтобы не причинить вреда окружающим здоровым тканям и органам.

    В заключение важно еще раз подчеркнуть, что, хотя все описанные типы электромагнитного излучения проявляют себя внешне по-разному, по своей сути они являются близнецами. Все электромагнитные волны в любой части спектра представляют собой распространяющиеся в вакууме или среде поперечные колебания электрического и магнитного полей, все они распространяются в вакууме со скоростью света с и отличаются друг от друга лишь длиной волны и, как следствие, энергией, которую они переносят. Остается только добавить, что названные мною границы диапазонов носят достаточно условный характер (и в других книгах вам, вполне вероятно, попадутся несколько иные значения граничных длин волн). В частности, микроволновые излучения с большими длинами волн нередко и справедливо относятся к сверхвысокочастотному диапазону радиоволн. Отсутствуют четкие границы и между жестким ультрафиолетовым и мягким рентгеновским, а также между жестким рентгеновским и мягким гамма-излучением.

    Спектроскопия

    Наличие атомов химических элементов в веществе можно выявить по присутствию характерных линий в спектре излучения или поглощения

    Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа №39

    Семинар по теме:

    «Спектр электромагнитных излучений»

    «Кругом нас, в нас самих, всюду и везде, вечно сменяясь, совпадая и сталкиваясь, идут излучения разной длины волны… Лик Земли ими меняется, ими в значительной мере лепится»

    В.И.Вернадский

    Клочкова Н.Ф. – учитель физики

    Г.Воронеж – 2013г.

    Обучающие цели урока:

    1.Усвоить следующие элементы неполного опыта учащихся в рамках отдельного урока:

    2.Низкочастотное излучение, радиоволны, инфракрасное излучение, видимое излучение, ультрафиолетовое излучение, рентгеновское излучение, гамма-лучи; их применение в жизнедеятельности человека.

    3.Систематизировать и обобщить знания об электромагнитных волнах.

    Развивающие цели урока:

    1.продолжить формирование научного мировоззрения на основе знаний об электромагнитных волнах.

    2.показать комплексное решение проблем на основе знаний физики и информатики.

    3.способствовать развитию аналитико-синтетического и образного мышления, для чего побуждать учащихся к осмыслению и нахождению причинно-следственных связей. 4.формировать и развивать ключевые компетенции: информационную, организационную, самоорганизационную, коммуникационную.

    5.При работе в паре и в группе сформировать такие важные качества и умения школьника, как: желание участвовать в совместной деятельности, уверенность в успехе, ощущение положительных эмоций от совместной деятельности;

    умение презентовать себя и свою работу;

    умение строить деловые отношения в совместной деятельности на уроке (принимать цель совместной деятельности и сопроводительные указания к ней, разделять обязанности, согласовывать способы достижения результата предложенной цели);

    анализировать и оценивать полученный опыт взаимодействия.

    Воспитательные цели урока:

    1.развивать вкус, акцентируя внимание на оригинальном дизайне презентации с эффектами анимации.

    2.воспитывать культуру восприятия теоретического материала с помощью компьютера для получения знаний об истории открытия, свойствах и применении электромагнитных волн

    3. воспитание чувства гордости за свою Родину, за отечественных ученых, которые работали в области электромагнитных волн, применили их в жизнедеятельности человека.

    Оборудование:

    Ноутбук, проектор, электронная библиотека «Просвещение» диск 1 (10-11класс), материалы из интернета.

    План урока:

    1 . Вступительное слово учителя.

    2.Изучение нового материала .

    1)Низкочастотное электромагнитное излучение: история открытия, источники и приемники, свойства и применение.

    2)Радиоволны: история открытия, источники и приемники, свойства и применение.

    3)Инфракрасное электромагнитное излучение: история открытия, источники и приемники, свойства и применение.

    4)Видимое электромагнитное излучение: история открытия, источники и приемники, свойства и применение.

    5)Ультрафиолетовое электромагнитное излучение: история открытия, источники и приемники, свойства и применение.

    6)Рентгеновское излучение: история открытия, источники и приемники, свойства и применение.

    7)Гамма - излучение: история открытия, источники и приемники, свойства и применение.

    Каждая группа дома готовила таблицу:

    История открытия

    Источники и приемники

    Свойства

    Применение

    Историк изучал и записывал в свою таблицу историю открытия излучения,

    Конструктор изучал источники и приемники различных типов излучений,

    Теоретик-эрудит изучал характерные свойстваэлектромагнитных волн,

    Практик изучал практическое применение электромагнитных излучений в различных сферах деятельности человека.

    Каждый учащийся к уроку чертил 7 таблиц, одна из которых дома заполнялась им.

    Учитель: Шкала ЭМ излучений имеет два раздела:

    1 раздел – излучение вибраторов;

    2 раздел – излучение молекул, атомов, ядер.

    1 раздел делится на 2 части (диапазона): низкочастотное излучение и радиоволны.

    2 раздел содержит 5 диапазонов: инфракрасное излучение, видимое излучение, ультрафиолетовое излучение, рентгеновское излучение и гамма-лучи.

    Мы начинаем изучение с низкочастотных электромагнитных волн, координатору группы 1 предоставляется слово.

    Координатор 1:

    Низкочастотное электромагнитное излучение -

    это электромагнитные волны с длиной волны 10 7 - 10 5 м

    ,

    История открытия:

    Впервые обратил внимание на низкочастотные

    электромагнитные волны советский физик Вологдин В.П., создатель современной высокочастотной электротехники. Он обнаружил, что при работе индукционных генераторов повышенной частоты возникали электромагнитные волны длиной от 500 метров до 30 км.

    Вологдин В.П.

    Источники и приемники

    Электрические колебания низкой частоты создаются генераторами в электрических сетях частотой 50 Гц, магнитными генераторами повышенной частоты до 200 Гц, а также в телефонных сетях частотой 5000 Гц.

    Электромагнитные волны более 10 км называют низкочастотными волнами. С помощью колебательного контура можно получить электромагнитные волны (радиоволны). Это доказывает, что резкой границы между НЧ и РВ нет. НЧ волны генерируются электрическими машинами и колебательными контурами.

    Свойства

    Отражение, преломление, поглощение, интерференция, дифракция, поперечность (волны с определённым направлением колебаний Е и В называются поляризованными),

    Быстрое затухание;

    В веществе, которое пронизывает НЧ волны, индуцируются вихревые токи, вызывая глубокое прогревание этого вещества.

    Применение

    Низкочастотное электромагнитное поле индуцирует вихревые токи, вызывая глубокое нагревание – это индуктотермия. НЧ используется на электростанциях, в двигателях, в медицине.

    Учитель: Расскажите о низкочастотном электромагнитном излучении.

    Ученики рассказывают.

    Учитель: Следующий диапазон – радиоволны, слово предоставляется координатору 2 .

    Координатор 2:

    Радиоволны

    Радиоволны - это электромагнитные волны с длиной волны от нескольких км до нескольких мм и частотой от 10 5 -10 12 Гц.

    История открытия

    О радиоволнах впервые в своих работах в 1868 году рассказал Джеймс Максвелл. Он предложил уравнение, которое описывает световые и радиоволны, как волны электромагнетизма.

    В 1896 году Генрих Герц экспериментально подтвердил

    теорию Максвелла, получив в своей лаборатории радиоволны длиной в несколько десятков сантиметров.

    В 1895году 7 мая А.С.Попов доложил Русскому физико-химическому обществу об изобретении прибора, могущего улавливать и регистрировать электрические разряды.

    24марта 1896года, используя эти волны, он передал на расстояние 250м первую в мире радиограмму из двух слов «Генрих Герц».

    В 1924г. А.А. Глаголева-Аркадьева с помощью созданного ею массового излучателя получила еще более короткие ЭМ волны, заходящие в область ИКИ излучения.

    М.А.Левитская, профессор Воронежского Государственного Университета в качестве излучающих вибраторов брала металлические шарики и маленькие проволочки, наклеенные на стекла. Ею получены ЭМ волны с длиной волны 30мкм.

    М.В. Шулейкин разработал математический анализ процессов радиосвязи.

    Б.А.Введенский разработал теорию огибания радиоволнами земли.

    О.В.Лосев открыл свойство кристаллического детектора генерировать незатухающие колебания.

    Источники и приёмники

    РВ излучаются вибраторами (антеннами, соединёнными с ламповыми или полупроводниковыми генераторами. В зависимости от назначения генераторы и вибраторы могут иметь разную конструкцию, но всегда антенна преобразует подводимые к ней ЭМ волны.

    В природе существуют естественные источники РВ во всех частотных диапазонах. Это звёзды, Солнце, галактики, метагалактики.

    РВ генерируются и при некоторых процессах, происходящих в земной атмосфере, например при разряде молний.

    Принимаются РВ также антеннами, которые преобразуют падающие на них ЭМ волны, в электромагнитные колебания, воздействующие затем на приёмник (телевизор, радиоприёмник, ЭВМ и др.)

    Свойства радиоволн:

    Отражение, преломление, интерференция, дифракция, поляризация, поглощение, короткие волны хорошо отражаются от ионосферы, ультракороткие проникают через ионосферу.

    Влияние на здоровье человека

    Как отмечают медики, наиболее чувствительными системами организма человека к электромагнитным излучениям являются: нервная, иммунная, эндокринная и половая.

    Исследование воздействия радиоизлучения от мобильных телефонов на людей дает первые неутешительные результаты.

    Еще в начале 90-х годов американский ученый Кларк обратила внимание, что здоровье улучшают …. радиоволны!

    В медицине существует даже направление - магнитотерапия, а некоторые ученые, например, доктор медицинских наук, профессор В.А. Иванченко, использует работающие на этом принципе свои медицинские приборы в лечебных целях.

    Кажется невероятным, но найдены частоты, губительные для сотен микроорганизмов и простейших, а на определенных частотах идет восстановление организма стоит на несколько минут включить прибор и, в зависимости от определенной частоты, органы, отмеченные как больные, восстанавливают свои функции, приходят в диапазон нормы.

    Защита от негативного воздействия

    Далеко не последнюю роль могут играть средства индивидуальной защиты на основе текстильных материалов.
    Многие зарубежные фирмы создали ткани, позволяющие эффективно защищать организм человека от большинства видов электромагнитного излучения

    Применение радиоволн

    Телескоп – гигант позволяет вести радиоизмерения.

    Комплекс «Спектр-М» позволяет анализировать в какой угодно области спектра любые образцы: твердые, жидкие, газообразные.

    Уникальный микроэндоскоп повышает точность диагноза.

    Радиотелескоп субмиллиметрового диапазона регистрирует излучение из части Вселенной, которая закрыта слоем космической пыли.

    Компактная камера. Преимущество: возможность стирать снимки.

    Радиотехнические методы и устройства применяются в автоматике, вычислительной технике, астрономии, физике, химии, биологии, медицине и т. д.

    Микроволновое излучение используют для быстрого приготовления пищи в СВЧ-печах.

    Воронеж – город радиоэлектроники. Магнитофоны и телевизоры, радиоприемники и радиостанции, телефон и телеграф, радио и телевидение.

    Учитель: Расскажите о радиоволнах. Сравните свойства низкочастотного излучения со свойствами радиоволн.

      Ученики рассказывают. Короткие волны хорошо отражаются от ионосферы. Ультракороткие проникают через ионосферу.

    Учитель: Следующий диапазон – инфракрасное излучение, слово предоставляется координатору 3 .

    Координатор 3:

    Инфракрасное излучение

    Частотный диапазон инфракрасных излучений

    3 . 10 11 – 4 . 10 14 Гц

    История открытия

    Инфракрасное излучение было обнаружено английским астрономом и физиком Уильямом Гершелем в 1800 году.

    Расщепив солнечный свет призмой, Гершель поместил термометр сразу за красной полосой видимого спектра и обнаружил, что температура термометра повышается. Следовательно, на термометр воздействует излучение, недоступное человеческому взгляду.

    Источники инфракрасного излучения

    ИК волны излучают нагретые тела, молекулы которых движутся интенсивно. Это излучение называют тепловым: электрическая дуга, квантовые генераторы(лазеры), тело человека.

    50 % энергии Солнца излучается в инфракрасном диапазоне, самый мощный источник ИКИ.

    Основная часть излучения лампы накаливания лежит в невидимом инфракрасном диапазоне и воспринимается в виде тепла. КПД этих ламп только15 %.

    Приемники инфракрасного излучения

    Их действие основано на преобразовании энергии ИКИ в другие виды энергии, измеряющиеся обычными методами.

    Это термоэлементы, болометры, фотоэлементы, фоторезисторы, чувствительные к ИКИ.

    Свойства

    1.Все свойства электромагнитных волн (отражение, преломление, интерференция, дифракция, поглощение и др.)

    2.Характерной особенностью ИКИ является тепловое воздействие, а также способность сильно поглощаться некоторыми веществами.

    3.Проходя через земную атмосферу, ИКИ ослабляется в результате рассеивания азотом и кислородом и поглощения парами воды.

    4.Наличие в атмосфере взвешенных частиц пыли, дыма, капель воды приводит к «парниковому эффекту».

    5.Химическое действие.

    6.Невидимое.

    Применение ИК излучения

    Для сушки лакокрасочных покрытий, овощей, фруктов.

    Преимущества:

    Быстрый нагрев изделий и материалов до заданной температуры,

    Небольшая длительность ИК-сушки для ряда лакокрасочных материалов по сравнению с конвективным способом сушки;

    Возможность нагрева части изделия (зонный нагрев).

    Инфракрасное излучение применяется в медицине, т.к. оказывает болеутоляющее, антиспазматическое, противовоспалительное, циркуляторное, стимулирующее и отвлекающее действие.

    В приборах ночного видения:

    биноклях,

    очках,

    прицелах для стрелкового оружия,

    ночных фото- и видеокамер.

    Здесь невидимое глазом инфракрасное изображение объекта преобразуется в видимое.

    Тепловизор - устройство для наблюдения за распределением температуры исследуемой поверхности. Распределение температуры отображается на дисплее как цветовое поле, где определённой температуре соответствует определённый цвет.

    Термограмма - изображения в инфракрасных лучах, показывающего картину распределения температурных полей.


    Тепловизоры применяют на предприятиях, где необходим контроль за тепловым состоянием объектов, и в организациях, занимающихся поиском неисправностей сетей различного назначения.

    Так, сканирование тепловизором может показать место отхода контактов в системах электропроводки

    Тепловизоры используют в строительстве при оценке теплоизоляционных свойств конструкций. С их помощью можно определить области наибольших теплопотерь в строящемся доме и сделать вывод о качестве применяемых строительных материалов и утеплителей.

    Тепловизионный снимок кирпичного фасада для оценки потерь тепла

    Термограммы используют в медицине для диагностики заболеваний.

    Так, инфракрасные снимки вен позволяют обнаруживать места закупорки сосудов, места локализации тромбов или злокачественных опухолей, даже если их температура превышает окружающую температуру на сотые доли градуса.

    Термограмма тела человека

    В телефонной связи, фотографирование в ИК лучах позволяют обнаруживать невидимые глазу звезды и слабо нагретые туманности, для сортировки материалов, обнаружения невидимых пятен, подписей, повреждений и для изучения тонких структур.

    Радиоспектроскопия – наука, использующая методы радиофизики для изучения электромагнитных волн сантиметрового и миллиметрового диапазона.

    Дистанционное управление телевизором или видеомагнитофоном осуществляется с помощью ИК излучения. В пультах дистанционного управления пучок инфракрасного излучения испускает светодиод.

    Учитель: Расскажите об инфракрасном излучении. Сравните свойства инфракрасного излучения со свойствами радиоволн.

    Ученики рассказывают.

    Учитель: Следующий диапазон – видимое излучение, слово предоставляется координатору 4 .

    Координатор 4:

    Видимое излучение

    Длина волн приблизительно от 380нм (фиолетовый) до 780 нм (красный).

    История открытия

    В работах Пифогора, Аристотеля, Платона и Евклида рассматриваются вопросы природы и распространения света, но только в средние века был заложен действительно научный фундамент учения о свете. В его основе работы Ньютона, Ломоносова, Гюйгенса, Гримальди и др. Именно в 16-17веке была обнаружена дифракция, дисперсия, поляризация света, изучены отражение и преломление света, измерена его скорость, построены первые телескопы и микроскопы. Ломоносов был крупным специалистом в области теоретической оптики.

    В 1756г. Он выступил на собрании Академии наук с речью «Слово о происхождении света». В ней он высказал предположение о волновой природе света. Впервые указал на единую природу тепловых и световых лучей, изложил основы цветовидения.

    Первые объяснения спектра видимого излучения дали Исаак Ньютон в книге «Оптика» и Иоганн Гёте в работе «Теория Цветов», однако ещё до них Роджер Бэкон наблюдал оптический спектр в стакане с водой. Лишь спустя четыре века после этого Ньютон открыл дисперсию света в призмах. Физики 20 века показали, что для света характерна двойственность свойств. В зависимости от условий свет проявляет волновые или квантовые свойств.

    Ньютон Гете Бэкон

    Источники излучения

    Солнце

    Звезды

    Электролампы

    Люминесцентные лампы

    Электрическая дуга

    Лазеры

    Полярное сияние

    Свойства световых волн

    Отражение

    Преломление


    Световые волны преломляются сильнее, чем радиоволны, но меньше инфракрасных излучений.

    Дисперсия

    Интерференция

    Дифракция


    Поляризация

    Свойства световых волн

    Воздействует на глаз,

    Делает видимым окружающие предметы,

    Способствует появлению свободных электронов,

    Вызывает фотоэффект,

    Обладает способностью оказывать:

    Фотохимическое и

    Биологическое действие .

    Применение видимого излучения

    Освещение


    3) Геометрическая оптика в медицинских приборах

    Очки- простейший медицинский прибор.


    Лазерное излучение

    является особым видом светового излучения электромагнитной природы, получаемое с помощью оптических квантовых генераторов - лазеров.

    Микроскопы

    Применяют для получения больших увеличений.

    Телескопы

    Основное назначение телескопов - собрать как можно больше излучения от небесного тела. Во вторую очередь телескопы служат для рассматривания объектов под большим углом или, как говорят, для увеличения. Телескопы бывают линзовые и

    зеркальные.

    Учитель: Расскажите о видимом излучении. Сравните свойства видимого излучения со свойствами инфракрасного излучения. Ученики рассказывают . Видимое излучение дает возможность познания окружающего мира.

    Учитель: Следующий диапазон – ультрафиолетовое излучение, слово предоставляется координатору 5 .

    Координатор 5:

    Ультрафиолетовое излучение

    Ультрафиолетовое излучение это электромагнитные волны с длиной волны 3,8*10 -7 – 10 -8 м.

    История открытия

    Английский врач Волластон и немецкий ученый Иоганн Риттер воспользовались фотопластинкой (фотохимическим действием электромагнитного излучения).

    Они установили, что за фиолетовым концом видимого спектра пленка засвечивается гораздо сильнее, чем за фиолетовыми лучами.

    Так как спектр они получили, разлагая белый свет, тот стало ясно, что в состав солнечного излучения входит более коротковолновое, чем фиолетовый свет, излучение.

    Оно получило название ультрафиолетового излучения.


    Иоганн Вильгельм Риттер и

    Волластон Уильям Хайд(1801)

    Источники и приемники

    Источники: Все тела, нагретые до 3000 градусов Цельсия (Солнце, звезды, высокотемпературная плазма, электрическая дуга, газоразрядные лампы: ртутные, ксеноновые, водородные и др.)

    Солнце Ртутно-кварцевые лампы

    Приемники: Для регистрации ультрафиолетового излучения используют обычные фотоматериалы. Ультрафиолетовое излучение обнаруживается с помощью фотоэлементов, фотоумножителей, люминофоров, светящихся под действием ультрафиолетовых лучей

    Свойства

    Невидимое

    Проявляет все свойства электромагнитных волн: отражение, преломление, поглощение, интерференция, дифракция, поперечность и др.)

    Оказывает сильное биологическое действие (убивает болезнетворные микробы, влияет на ЦНС)

    Ионизирует воздух

    Оказывает химическое действие (на люминисцентный экран, фотобумагу и др.)

    Для УФИ кварц прозрачен, стекло непрозрачно)

    УФИ в малых дозах:

    повышает тонус живого организма;

    активирует защитные механизмы;

    повышает уровень иммунитета, а также увеличивает секрецию ряда гормонов;

    образуются вещества, которые обладают сосудорасширяющим действием, повышают проницаемость кожных сосудов;

    изменяется углеводный и белковый обмен веществ в организме;

    изменяет легочную вентиляцию - частоту и ритм дыхания; повышается газообмен;

    образуется в организме витамин D 2, укрепляющий костно-мышечную систему и обладающий антирахитным действием;

    убивает бактерии.

    УФИ в больших количествах :

    Действие ультрафиолетового облучения на кожу, превышающее естественную защитную способность кожи (загар) приводит к .

    Длительное действие ультрафиолета способствует развитию , различных видов кожи, ускоряет старение и появление морщин.

    Ультрафиолетовое излучение неощутимо для глаз человека, но при интенсивном облучении вызывает типично радиационное поражение (ожог сетчатки). Так, 1 августа 2008 года десятки россиян повредили сетчатку глаза , несмотря на многочисленные предупреждения о вреде его наблюдения без защиты глаз. Они жаловались на резкое снижение зрения и пятно перед глазами.

    Применение

    Медицина: бактерицидные лампы

    Промышленность: строительство, ртутные лампы, специальная фотография и др.

    Наука: астрономия, химия, дефектоскопия и др.

    Сельское хозяйство: сушка овощей, зерна и др

    Люминесцентные лампы Солярий Кварцевание инструмент в лаборатории

    Учитель: Расскажите об ультрафиолетовом излучении. Сравните свойства ультрафиолетового излучения со свойствами видимого излучения.

    Ученики рассказывают .

    Учитель: Следующий диапазон – рентгеновское излучение, слово предоставляется координатору 6 .

    Рентгеновское излучение

    Рентгеновское излучение составляют электромагнитные волны с длиной

    от 50 нм до 10 -3 нм и

    частотой 3·10 17 - 3·10 20 Гц

    Первооткрыватели

    Рентгеновское излучение было открыто немецким физиком В.Рентгеном (1845-1923). В1895году. Его имя увековечено и в некоторых других физических терминах, связанных с этим излучением.


    Источники рентгеновского излучения

    В 1895 г. Вильгельм много экспериментировал с газоразрядными трубками, изучал катодные лучи. При этом обнаружил свечение люминесцентного экрана, расположенного вблизи трубки. Поместив трубку в коробку из черного картона, к своему удивлению, не заметил никакого уменьшения яркости свечения, более того, свечение можно было обнаружить даже тогда, когда экран был удален на 2 м.

    Рентген понял, что открыл новый вид излучения.

    Он назвал его Х-лучами и принялся за изучение свойств открытого излучения.

    Источники и приемники рентгеновского излучения

    Источником РИ является рентгеновская трубка, в которой ускоренные электрическим полем электроны бомбардируют металлический анод.

    При резком торможении заряженных частиц возникает РИ.

    Источником РИ являются некоторые радиоактивные изотопы.

    Действие приемников РИ основано на их сильном химическом ионизирующем воздействии, а также способности вызывать люминесценцию.

    Приемники рентгеновского излучения

    Обнаруживают рентгеновские лучи по их способности вызывать определенное свечение некоторых кристаллов и действовать на фотопленку.

    В любой современной физической лаборатории, занимающейся проблемами ядерной физики или изучении космических лучей, можно увидеть прибор, носящий имя его изобретателя, - камера Вильсона

    Свойства рентгеновского излучения

    Рентген установил, что открытые им лучи обладают:

    огромной проникающей способностью,

    оказывает фотохимическое действие,

    открытые им лучи не отклонялись ни в магнитном, ни в электрическом полях,

    вызывали люминесценцию излучения света источниками за счет поступления к ним энергии в результате различных процессов,

    РИ поглощается веществом, степень поглощения пропорциональна плотности вещества,

    обладает всеми свойствами электромагнитных волн(отражение, преломление и др.),

    невидимое.

    Влияние на здоровье человека

    Облучение в больших количествах вызывает лучевую болезнь

    Способы защиты от отрицательного воздействия рентгеновского излучения

    Экранами могут защищаться оконные проемы и стены зданий и сооружений, находящихся под воздействием электромагнитного излучения (ЭМИ).

    Врачи, работающие у рентгеновских аппаратов, стали защищаться свинцовым экраном: свинец - это как бы защитная броня, он не пропускает рентгеновских лучей.

    Медицина: рентгенограммы

    Техника: рентгеновская дефектоскопия

    Наука: изучение структуры кристаллов и белковых молекул, рентгеновская спектроскопия, рентгеновский микроскоп и др.

    Аппарат для флюорографии Маммограф

    Применение рентгеновского излучения

    Медицина и культура

    Диагностика болезней(переломы, опухоли и др.)

    Лечение болезней

    Определение дефектов картин

    Отделение поддельных бриллиантов от настоящих


    Томограф Снимок в рентгеновских лучах

    Применение рентгеновского излучения

    Наука и техника

    Рентгеновский микроскоп: изучение биологических объектов(клетки, их составляющие и др.)

    Рентгеноструктурный анализ: определение дефектов в кристаллах, изучение структуры вещества

    Рентгенодефектоскопия: определение трещин,раковин, толщины швов и др.

    Рентгеновская спектроскопия: изучение строения и свойств атомов

    Рентгеновская голография объектов

    Рентгеновский телескоп : изучение звезд, определение их координат и др.

    Аппараты для проведения рентгеноструктурного анализа вещества


    Учитель: Расскажите о рентгеновском излучении. Сравните свойства рентгеновского излучения со свойствами ультрафиолетового излучения.

    Ученики рассказывают . Учитель: Следующий диапазон – гамма-излучение, слово предоставляется координатору7

    Гамма - излучение

    Длина волны - < 5·10 −3 нм

    История открытия

    Гамма-излучение было открыто французским физиком Полем Виллардом в 1900 году при исследовании излучения радия.

    Гамма-кванты сверхвысоких энергий рождаются при столкновении заряженных частиц, разогнанных мощными электромагнитными полями космических объектов или земных ускорителей элементарных частиц. В атмосфере они крушат ядра атомов, порождая каскады частиц, летящих с околосветовой скоростью.

    Источники гамма- излучения

    Атомные ядра, изменяющие энергетическое состояние.

    Ускоренно движущиеся заряженные частицы.

    Звезды, галактики.

    Ядерные реакции, радиоактивный распад ядер.


    Свойства гамма-излучения

    Большая проникающая способность.

    Высокая химическая активность.

    Является ионизирующим, вызывает лучевую болезнь, лучевой ожог и злокачественные опухоли.

    Применение

    Гамма-дефектоскопия, контроль изделий просвечиванием γ-лучами.

    Консервирование пищевых продуктов.

    Стерилизация медицинских материалов и оборудования.

    Лучевая терапия.

    Уровнемеры.

    Гамма-каротаж в геологии.

    Гамма-высотомер, измерение расстояния до поверхности при приземлении спускаемых космических аппаратов.

    Гамма-стерилизация специй, зерна, рыбы, мяса и других продуктов для увеличения срока хранения.

    Все свойства электромагнитных волн.

    Учитель: Расскажите о гамма-излучении. Сравните свойства гамма-излучения со свойствами рентгеновского излучения.

    Ученики рассказывают . Выводы

    Различные виды электромагнитных излучений имеют ряд общих свойств, что позволяет рассматривать их как составные части единой шкалы электромагнитных излучений.

    Принципиального различия между отдельными излучениями нет. Все они представляют собой электромагнитные волны, порождаемые заряженными частицами. Обнаруживаются электромагнитные волны, в конечном счете, по их действию на заряженные частицы. В вакууме излучение любой длины волны распространяется со скоростью 300 000 км/с. Границы между отдельными областями шкалы излучений весьма условны .

    Учитель: Существуют ли четкие границы между отдельными диапазонами?

    Учащиеся: Нет. Между отдельными видами излучений нет принципиального отличия. Работы Левитской, Вологдина и др. показали, излучения граничных частот могут быть получены двумя способами: и как низкочастотные и как высокочастотные, да и свойства их сходны.

    Всё говорит об условности границ между отдельными областями спектра /шкалы/электромагнитных излучени, но каждый вид излучения имеет своё характерное свойство, обусловленное частотой излучения.
    Учитель: Кончается ли шкала электромагнитных излучений с длиной волны λ =10-13см?

    Учащиеся: Шкала не имеет границ, ибо нет пределов познания природы. Ученые, безусловно, найдут еще методы получения еще более коротких волн.

    Пройдем по свойствам волн, начиная с радиоволн.

    Инфракрасное излучение обладает тепловыми свойствами.

    С помощью видимого излучения человек познаёт окружающий мир.

    Ультрафиолетовое излучение обладает бактерицидными и ионизирующими свойствами.

    Рентгеновы лучи обладают большой проникающей способностью и биологической активностью.

    Гамма – лучи обладают еще более проникающей способностью и биологической активностью.

    Вывод 1 Количественные характеристики волн: длина и частота определяют их качество.

    Пройдем снова по свойствам волн слева направо. При этом переходе (длина волны уменьшается, а частота увеличивается) нарастают квантовые свойства, а уменьшаются волновые.

    Вывод 2. Все излучения объединяют, казалось бы, противоположные свойства: волновые и квантовые.

    Здесь четко выражен дуализм в природе, единство и борьба двух противоположностей

    (чем короче длина волны, тем четче выражены квантовые свойства).

    Учитель: Мы видим на уроке подтверждение двух законов диалектики: закона перехода количественных изменений в качественные на примере свойств НИ, РВ, ИКИ, ВИ, УФИ, РИ, гамма-излучения и закона единства и борьбы двух противоположностей на основе волновых и квантовых свойств света.

    Задание на дом.

    1.записи в тетрадях, дополнить записи.

    2.§84-86 Г.Я. Мякишев Б.Б. Буховцев В.М. Чаругин

    Литература:

    1.Учебник физики-11 Г.Я. Мякишев Б.Б. Буховцев В.М. Чаругин

    2.Резников Л.И. «Физическая оптика в средней школе»

    3.Орехов В.П. «Колебания и волны в курсе физики средней школы»

    4.А.Луизов, Н.Теребинская «Свет без тепла»

    5. Материалы Интернета

    и другие.

    Прозрачность вещества для гамма-лучей, в отличие от видимого света, зависит не от химической формы и агрегатного состояния вещества, а в основном от заряда ядер, входящих в состав вещества, и от энергии гамма-квантов. Поэтому поглощающую способность слоя вещества для гамма-квантов в первом приближении можно охарактеризовать ее поверхностной плотностью (в г / см?). Зеркал и линз для γ-лучей не существует.

    Резкой нижней границы для гамма-излучения не существует, однако обычно считается, что гамма-кванты излучаются ядром, а рентгеновские кванты - электронной оболочкой атома (это лишь терминологическое различие, не затрагивающее физических свойств излучения).


    2.2. Рентгеновское излучение

    Рентгеновские кванты излучаются в основном при переходах электронов в электронной оболочке тяжелых атомов на низшие орбиты. Вакансии на низких орбитах создаются обычно электронным ударом. Рентгеновское излучение, созданное таким образом, имеет линейчатый спектр с частотами, характерными для данного атома (см. характеристическое рентгеновское излучение) это позволяет, в частности, исследовать состав веществ (рентгенофлуоресцентного анализа). Тепловое , тормозное и синхротронное рентгеновское излучение имеет непрерывный спектр.

    В рентгеновских лучах наблюдается дифракция на кристаллических решетках, поскольку длины электромагнитных волн на этих частотах близки к периодам кристаллических решеток. На этом основан метод рентгенодифракционную анализа .


    2.3. Ультрафиолетовое излучение

    Диапазон: от 400 нм (3,10 эВ) до 10 нм (124 эВ)

    Название Аббревиатура Длина волны в нанометрах Количество энергии на фотон
    Ближний NUV 400 - 300 3,10 - 4,13 эВ
    Средний MUV 300 - 200 4,13 - 6,20 эВ
    Дальний FUV 200 - 122 6,20 - 10,2 эВ
    Экстремальный EUV, XUV 121 - 10 10,2 - 124 эВ
    Вакуумный VUV 200 - 10 6,20 - 124 эВ
    Ультрафиолет А, длинноволновой диапазон, Черный свет UVA 400 - 315 3,10 - 3,94 эВ
    Ультрафиолет B (средний диапазон) UVB 315 - 280 3,94 - 4,43 эВ
    Ультрафиолет С, коротковолновой, гермицидний диапазон UVC 280 - 100 4,43 - 12,4 эВ

    2.4. Оптическое излучение

    Излучение оптического диапазона (видимый свет и близкое инфракрасное излучение) свободно проходит сквозь атмосферу, может быть легко отражено и преломляется в оптических системах. Источники: тепловое излучение (в том числе Солнца), флюоресценция, химические реакции, светодиоды.

    В отличие от оптического диапазона, исследование спектра в радиодиапазоне проводится не по физическим разделением волн, а по методам обработки сигналов.


    Совокупность всех частот (длин волн) электромагнитного излучения называют электромагнитным спектром. Интервал длин волн от 10 -10 до 10 -1 м разбивают на области (рис. 2): ультрафиолетовая (УФ) область охватывает диапазон ~10 - 380 нм; инфракрасная (ИК) область 750-10 5 нм; видимый свет, используемый в наиболее распространенных методах ана­лиза, занимает узкую область 380 -750 нм.

    Поток фотонов с одинаковой частотой называют монохро­матическим , с разными частотами-полихроматическим. Обыч­ный наблюдаемый поток излучения от раскаленных тел, в ча­стности солнечный свет, является полихроматическим.

    Рис. 2. Области электромагнитного спектра

    2. Строение вещества и происхождение спектров

    Из всего многообразия вопросов, связанных со строением вещества (структура кристаллических и некристаллических тел, теория химической связи, строение атомов, молекул и ядер), остановимся лишь на тех, которые имеют непосредственное отношение к спектроскопическим методам анализа,- это строение атомов и молекул.

    2.1. Строение атома и происхождение атомных спектров

    Атом-дискретная частица вещества размером ~10 -8 см, состоящая из положительно заряженного ядра радиусом ~10 -12 см и движущихся вокруг него отрицательно заряженных электронов. Скорость электрона столь велика, что в атоме доминируют его волновые свойства. Длина волны движущегося электрона ~10 -8 см соизмерима с атомными размерами, по­этому электрон нельзя представить в виде дискретного объекта, как это делается в классической физике, например при движении электронов в газоразрядной трубке. Электрон как бы размазан по атому в виде волны, и можно говорить лишь о вероятности его пребывания в какой-то точке внутри атома или о рас­пределении плотности отрицательного заряда вокруг ядра, ко­торое может быть достаточно сложным.

    Области с максимальной плотностью заряда называют эле­ктронными орбиталями или энергетическими уровнями , поскольку каждая орбиталь характеризуется определенной энергией. Энер­гетическое состояние всего атома определяется в основном энергией электронных орбиталей.

    Каждый электрон и атом, а следовательно, энергетический уровень описывают набором четырех квантовых чисел: главного, побочного, магнитного и спинового.

    Главное квантовое число п характеризует удаленность электрона от ядра и принимает значения 1, 2, 3, .... Чем больше n, тем дальше от ядра находится электронная орбиталь.

    Побочное квантовое число l определяет форму орбитали и принимает значения 0, 1, 2, 3, ..., которые обозначают буквами s , р, d , f , .... Движущийся электрон обладает моментом количества движения. При l = 0 момент количества движения равен нулю и электрический заряд размазан по сфере, при l = 1 орбиталь имеет форму гантели.

    Магнитное квантовое число т характеризует расположение орбитали в про­странстве и принимает значения от –l до l . При l = 0 магнитное квантовое число равно нулю, при l = 1 оно принимает значения -1, 0, +1, и орбитали, имеющие форму гантели, располагаются вдоль осей прямоугольной системы координат.

    Спиновое квантовое число m s , равное -1/2 и +1/2, отражает собственный момент импульса электрона.

    По принципу Паули в атоме не может быть двух электронов с одинаковым набором квантовых чисел (хотя бы одно число должно отличаться). В противном случае силы отталкивания «вытолкнули» бы один из них на другую орбиталь. Поэтому многоэлектронный атом имеет сложную структуру: электроны с один­аковыми главными квантовыми числами образуют электронные слои-оболочки (уровни), обозначаемые буквами К, L, М, ... для /1 = 1, 2, 3, ... соответственно, а электроны с одинаковыми побочными квантовыми числами -подоболочки (подуровни) в пределах одной оболочки. Электроны с разными значениями l и т, но с одинаковым п могут оказаться равными по энергии (вырожденными), однако при воздействии какого-либо внешнего поля (электрического, магнитного и др.) вырождение снимается.

    Статьи по теме: