Золотое сечение как закон природы. Золотое сечение в природе. Золотое сечение в архитектуре

ЗОЛОТОЕ СЕЧЕНИЕ - БОЖЕСТВЕННАЯ МЕРА КРАСОТЫ,
СОТВОРЕННАЯ В ПРИРОДЕ.

Золотое сечение - Божественная мера красоты, сотворенная в природе.

Аллах для всего установил должную меру. (Сура "Ат Таляк", 65:3)

…В творении Всемилостивого (Аллаха) ты не найдешь ни доли
нарушений и несоответствий. Вновь обрати взор свой вокруг, видишь ли
ты какой-нибудь изъян? И вновь свой взор ты обрати: вернется он
униженным и тщетным (не найдя ни доли несоответствия).
(Сура "Аль Мульк", 67:3-4)

"… Если с точки зрения исполнения или функции элемента какая-либо форма имеет пропорциональность и приятна, привлекательна для взора, то в таком случае мы можем тотчас же искать в ней какую-либо из функций Золотого Числа … Золотое Число вовсе не математический вымысел. Это на самом деле продукт закона природы, основанный на правилах пропорциональности." 1

Давайте выясним, что общего между древнеегипетскими пирамидами, картиной Леонардо да Винчи "Мона Лиза", подсолнухом, улиткой, сосновой шишкой и пальцами человека?

Ответ на этот вопрос сокрыт в удивительных числах, которые были открыты итальянским математиком средневековья Леонардо Пизанским, более известным по именем Фибоначчи ((род. о к. 1170 - умер после 1228), итальянский математик. Путешествуя по Востоку, познакомился с достижениями арабской математики; способствовал передаче их на Запад. Основные работы "Liber Abaci" (1202) - трактат об арифметике (индийские цифры) и алгебре (до квадратных уравнений), "Practica Geometriae" (1220)).

После его открытия числа эти так и стали называться именем известного математика. Удивительная суть последовательности чисел Фибоначчи состоит в том, что каждое число в этой последовательности получается из суммы двух предыдущих чисел. 2

Числа, образующие последовательность 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, ... называются "числами Фибоначчи" , а сама последовательность - последовательностью Фибоначчи .

В числах Фибоначчи существует одна очень интересная особенность. При делении любого числа из последовательности на число, стоящее перед ним в ряду, результатом всегда будет величина, колеблющаяся около иррационального значения 1.61803398875... и через раз то пp евосходящая, то не достигающая его.
(Прим. иррациональное число, т.е. число, десятичное представление которого бесконечно и не периодично)

Более того, после 13-ого числа в последовательности этот результат деления становится постоянным до бесконечности ряда… И менно это постоянное число деления в средние века было названо Божественной пропорцией, а ныне в наши дни именуется как золотое сечение , золотое сpеднее или золотая пропорция.

В алгебp е это число обозначается гpеческой буквой фи (Ф )

Итак, Золотая пропорция = 1 : 1,618

233 / 144 = 1,618
377 / 233 = 1,618
610 / 377 = 1,618
987 / 610 = 1,618
1597 / 987 = 1,618
2584 / 1597 = 1,618

Тело человека и золотое сечение

Художники, ученые, модельеры, дизайнеры делают свои расчеты, чертежи или наброски, исходя из соотношения золотого сечения. Они используют мерки с тела человека, сотворенного также по принципу золотой сечения. Леонардо Д а Винчи и Ле Корбюзье перед тем как создавать свои шедевры брали параметры человеческого тела, созданного по закону Золотой пропорции.

Самая главная книга всех современных архитекторов справочник Э.Нойферта "Строительное проектирование" содержит основные расчеты параметров туловища человека, заключающие в себе золотую пропорцию.

Пропорции различных частей нашего тела составляют число, очень близкое к золотому сечению. Если эти пропорции совпадают с формулой золотого сечения, то внешность или тело человека считается идеально сложенными. Принцип расчета золотой меры на теле человека можно изобразить в виде схемы. 3

M/m=1,618

Первый пример золотого сечения в строении тела человека:
Если принять центром человеческого тела точку пупа, а расстояние между ступней человека и точкой пупа за единицу измерения, то рост человека эквивалентен числу 1.618.

Кроме этого есть и еще несколько основных золотых пропорции нашего тела:

  • расстояние от кончиков пальцев до запястья и от запястья до локтя равно 1:1.618
  • расстояние от уровня плеча до макушки головы и размера головы равно 1:1.618
  • расстояние от точки пупа до макушки головы и от уровня плеча до макушки головы равно 1:1.618
  • расстояние точки пупа до коленей и от коленей до ступней равно 1:1.618
  • расстояние от кончика подбородка до кончика верхней губы и от кончика верхней губы до ноздрей равно 1:1.618
  • расстояние от кончика подбородка до верхней линии бровей и от верхней линии бровей до макушки равно 1:1.618

Золотое сечение в чертах лица человека как критерий совершенной красоты.

В строении черт лица человека также есть множество примеров, приближающихся по значению к формуле золотого сечения. Однако не бросайтесь тотчас же за линейкой, чтобы обмерять лица всех людей. Потому что точные соответствия золотому сечению, по мнению ученых и людей искусства, художников и скульпторов, существуют только у людей с совершенной красотой. Собственно точное наличие золотой пропорции в лице человека и есть идеал красоты для человеческого взора.

К примеру, если мы суммируем ширину двух передних верхних зубов и разделим эту сумму на высоту зубов, то, получив при этом число золотого сечения, можно утверждать, что строение этих зубов идеально.

На человеческом лице существуют и иные воплощения правила золотого сечения. Приведем несколько таких соотношений:

  • Высота лица / ширина лица,
  • Центральная точка соединения губ до основания носа / длина носа.
  • Высота лица / расстояние от кончика подбородка до центральной точки соединения губ
  • Ширина рта / ширина носа,
  • Ширина носа / расстояние между ноздрями,
  • Расстояние между зрачками / расстояние между бровями.

Рука человека

Достаточно лишь приблизить сейчас вашу ладонь к себе и внимательно посмотреть на указательный палец, и вы сразу же найдете в нем формулу золотого сечения. Каждый палец нашей руки состоит из трех фаланг.

Сумма двух первых фаланг пальца в соотношении со всей длиной пальца и дает число золотого сечения (за исключением большого пальца).

Кроме того, соотношение между средним пальцем и мизинцем также равно числу золотого сечения. 4

У человека 2 руки, пальцы на каждой руке состоят из 3 фаланг (за исключением большого пальца). На каждой руке имеется по 5 пальцев, то есть всего 10, но за исключением двух двухфаланговых больших пальцев только 8 пальцев создано по принципу золотого сечения. Тогда как все эти цифры 2, 3, 5 и 8 есть числа последовательности Фибоначчи.

Золотая пропорция в строении легких человека

Американский физик Б.Д.Уэст и доктор А.Л. Гольдбергер во время физико-анатомических исследований установили, что в строении легких человека также существует золотое сечение. 5

Особенность бронхов, составляющих легкие человека, заключена в их асимметричности. Бронхи состоят из двух основных дыхательных путей, один из которых (левый) длиннее, а другой (правый) короче.

Было установлено, что эта асимметричность продолжается и в ответвлениях бронхов, во всех более мелких дыхательных путях. 6 П ричем соотношение длины коротких и длинных бронхов также составляет золотое сечение и равно 1:1,618.

Строение золотого ортогонального четырехугольника и спирали.

Золотое сечение - это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.

В геометрии прямоугольник с таким отношением сторон стали называть золотым прямоугольником. Его длинные стороны соотносятся с короткими сторонами в соотношении 1,168 : 1.

Золотой прямоугольник также обладает многими удивительными свойствами. Золотой прямоугольник обладает многими необычными свойствами. Отрезав от золотого прямоугольника квадрат, сторона которого равна меньшей стороне прямоугольника, мы снова получим золотой прямоугольник меньших размеров. Этот процесс можно продолжать до бесконечности. Продолжая отрезать квадраты, мы будем получать все меньшие и меньшие золотые прямоугольники. Причем располагаться они будут по логарифмической спирали, имеющей важное значение в математических моделях природных объектов (например, раковинах улиток).

Полюс спирали лежит на пересечении диагоналей начального прямоугольника и первого отрезаемого вертикального. Причем, диагонали всех последующих уменьшающихся золотых прямоугольников лежат на этих диагоналях. Разумеется, есть и золотой треугольник.

Английский дизайнер и эстетик Уильям Чарлтон констатировал, что люди считают спиралевидные формы приятными на вид и используют их вот уже тысячелетия, объяснив это так: "Нам приятен вид спирали, потому что визуально мы с легкостью можем рассматривать ее." 7


Лежащее в основе строения спирали правило золотого сечения встречается в природе очень часто в бесподобных по красоте творениях. Самые наглядные примеры - спиралевидную форму можно увидеть и в расположении семян подсолнечника, и в шишках сосны, в ананасах, кактусах, строении лепестков роз и т.д.

Ботаники установили, что в расположении листьев на ветке, семян подсолнечника или шишек сосны со всей очевидность проявляется ряд Фибоначчи , а стало быть, проявляется закон золотого сечения .

Всевышний Господь каждому Своему творению установил особую меру и придал соразмерность, что подтверждается на примерах, встречающихся в природе. Можно привести великое множество примеров, когда процесс роста живых организмов происходит в строгом соответствии с формой логарифмической спирали.


Все пружинки в спирали имеют одинаковую форму. Математики установили, что даже при увеличении размеров пружинок форма спирали остается неизменной. В математике нет более иной формы, которая обладала бы такими же уникальными свойствами как спираль. 8

Строение морских раковин

Ученые, изучавшие внутреннее и внешнее строение раковин мягкотелых моллюсков, обитающих на дне морей, констатировали:

"Внутренняя поверхность раковин безупречно гладкая, а внешняя вся покрыта шероховатостями, неровностями. Моллюск был в раковине и для этого внутренняя поверхность раковины должна была быть безупречно гладкой. Внешние углы-изгибы раковины увеличивают ее крепость, твердость и таким образом повышают ее прочность. Совершенство и поразительная разумность строения ракушки (улитки) восхищает. Спиральная идея раковин является совершенной геометрической формой и удивительна по своей отточенной красоте." 9

У большинства улиток, которые обладают раковинами, раковина растет в форме логарифмической спирали. Однако нет сомнения, что эти неразумные существа не имеют представления не только о логарифмической спирали, но не обладают даже простейшими математическими знаниями, чтобы самим создать себе спиралевидную раковину.

Но тогда как же эти неразумные существа смогли определить и избрать для себя идеальную форму роста и существования в виде спиральной раковины? Могли ли эти живые существа, которых ученых мир называет примитивными формами жизни, рассчитать, что идеальной для их существования будет логарифмическая форму ракушки?

Конечно же нет, потому что такой замысел невозможно осуществить без наличия разума и знаний. Но таковым разумом не обладают ни примитивные моллюски, ни бессознательная природа, которую, правда, некоторые ученые называют создательницей жизни на земле(?!)

Пытаться объяснить происхождение подобной даже самой примитивной формы жизни случайным стечением неких природных обстоятельств по меньшей мере абсурдно. Совершенно ясно, что этот проект является осознанным творением. И это творение принадлежит Аллаху - Господу миров:

"…Господь мой безграничным знанием Своим все объемлет. Ужель опять не поразмыслить вам об этом?" (Сура "Аль Ана`а м", 6:80)

Биолог Сэр Д`а рки Томпсон этот вид роста морских раковин называет "форма роста гномов". Сэр Томпсон делает такой комментарий:

"Нет более простой системы, чем рост морских ракушек, которые растут и расширяются соразмерно, сохраняя ту же форму. Раковина, что самое удивительное, растет, но никогда не меняет формы." 10

Наутилус, размером в несколько сантиметров в диаметре, представляет собой самый выразительный пример гномового вида роста. С.Моррисон так описывает этот процесс роста наутилуса, спланировать который даже человеческим разумом представляется довольно сложным:

"Внутри раковины наутилуса есть множество отделов-комнат с перегородками из перламутра, причем сама раковина внутри представляет собой спираль, расширяющуюся от центра. По мере роста наутилуса в передней части ракушки нарастает еще одна комнатка, но уже больших размеров, чем предыдущая, а перегородки оставшейся позади комнатки покрываются слоем перламутра. Таким образом, спираль все время пропорционально расширяется." 11

Приведем лишь некоторые типы спиралевидных раковин имеющих логарифмическую форму роста в соответствии с их научными названиями:
Haliotis Parvus, Dolium Perdix, Murex, Fusus Antiquus, Scalari Pretiosa, Solarium Trochleare.

Все обнаруженные ископаемые останки раковин также имели развитую спиральную форму.

Однако логарифмическая форма роста встречается в животном мире не только у моллюсков. Рога антилоп, диких козлов, баранов и прочих подобных животных также развиваются в виде спирали по законам золотой пропорции. 12

Золотое сечение в ухе человека

Во внутреннем ухе человека имеется орган Cochlea ("Улитка"), который исполняет функцию передачи звуковой вибрации. Эта костевидная структура наполнена жидкостью и также сотворена в форме улитки, содержащую в себе стабильную логарифмическую форму спирали = 73º 43’.

Рога и бивни животных, развивающиеся в форме спирали.

Бивни слонов и вымерших мамонтов, когти львов и клювы попугаев являют собой логарифмические формы и напоминают форму оси, склонной обратиться в спираль. Пауки всегда плетут свои паутины в виде логарифмической спирали. Строение таких микроорганизмов, как планктоны (виды globigerinae, planorbis, vortex, terebra, turitellae и trochida) также имеют форму спирали.

Золотое сечение в строении микромиров

Геометрические фигуры не ограничиваются только лишь треугольником, квадратом, пяти- или шестиугольником. Если соединить эти фигуры различным образом между собой, то мы получим новые трехмерные геометрические фигуры. Примерами этому служат такие фигуры как куб или пирамида. Однако кроме них существуют также другие трехмерные фигуры, с которыми нам не приходилось встречаться в повседневной жизни, и названия которых мы слышим, возможно, впервые. Среди таких трехмерных фигур можно назвать тетраэдр (правильная четырехсторонняя фигура), октаэдр, додекаэдр, икосаэдр и т.п. Додекаэдр состоит из 13-ти пятиугольников, икосаэдр из 20-и треугольников. Математики отмечают, что эти фигуры математически очень легко трансформируются, и трансформация их происходит в соответствии с формулой логарифмической спирали золотого сечения.

В микромире трехмерные логарифмические формы, построенные по золотым пропорциям, распространены повсеместно. К примеру, многие вирусы имеют трехмерную геометрическую форму икосаэдра. Пожалуй, самый известный из таких вирусов - вирус Adeno. Белковая оболочка вируса Адено формируется из 252 единиц белковых клеток, расположенных в определенной последовательности. В каждом углу икосаэдра расположены по 12 единиц белковых клеток в форме пятиугольной призмы и из этих углов простираются шипообразные структуры.

Впервые золотое сечение в строении вирусов обнаружили в 1950-хх гг. ученые из Лондонского Биркбекского Колледжа А.Клуг и Д.Каспар. 13 Первым логарифмическую форму явил в себе вирус Polyo. Форма этого вируса оказалась аналогичной с формой вируса Rhino 14.

Возникает вопрос, каким образом вирусы образуют столь сложные трехмерные формы, устройство которых содержит в себе золотое сечение, которые даже нашим человеческим умом сконструировать довольно сложно? Первооткрыватель этих форм вирусов, вирусолог А.Клуг дает такой комментарий:

"Доктор Каспар и я показали, что для сферической оболочки вируса самой оптимальной формой является симметрия типа формы икосаэдра. Такой порядок сводит к минимуму число связующих элементов… Большая часть геодезических полусферических кубов Букминстера Фуллера построены по аналогичному геометрическому принципу. 14 Монтаж таких кубов требует чрезвычайно точной и подробной схемы-разъяснения. Тогда как бессознательные вирусы сами сооружают себе столь сложную оболочку из эластичных, гибких белковых клеточных единиц." 15

При изучении школьных предметов имеется возможность рассмотреть взаимосвязи между понятиями, принятыми в различных областях знаний, и процессами, протекающими в природной среде; выяснить связь между математическими законами и свойствами и закономерностями развития природы.

С древности, наблюдая за окружающей природой и создавая произведения искусства, люди искали закономерности, которые позволяли бы определить прекрасное. Но человек не только создавал красивые предметы, не только любовался ими, он все чаще задавался вопросом: почему этот предмет красив, он нравится, а другой, очень похожий, не нравится, его нельзя назвать красивым? Тогда из творца прекрасного он превращался в его исследователя. Уже в Древней Греции изучение сущности красоты, прекрасного сформировалось в отдельную ветвь науки – эстетику. Изучение прекрасного стало частью изучения гармонии природы, ее основных законов организации.

Красота скульптуры, красота храма, красота симфонии, поэмы, картины. Что между ними общего? Разве можно сравнивать красоту храма с красотой ноктюрна? Оказывается можно, если будут найдены единые критерии прекрасного, если будут открыты общие формулы красоты, объединяющие понятие прекрасного самых различных объектов – от цветка ромашки (разве он не прекрасен?) до красоты обнаженного человеческого тела. Попытки найти подобные критерии прекрасного в различных видах искусств и природы и составляют предмет эстетики.

«Формул красоты» уже известно немало. Уже давно в своих творениях люди предпочитают правильные геометрические формы – квадрат, круг, равнобедренный треугольник, пирамиду и т. д. Симметричные фигуры обычно предпочтительнее, чем несимметричные. В пропорциях различных сооружений предпочтительны целочисленные соотношения. Человек вообще предпочитает порядок – беспорядку, простоту – сложности, определенность – неопределенности. Очевидно, в этом проявляется сущность самой жизни, как феномена природы – упорядочение беспорядка.

Из многих пропорций, которыми издавна пользовался человек при создании гармонических произведений, существует одна, единственная и неповторимая, обладающая уникальными свойствами. Она отвечает такому делению целого на две части, при котором отношение большей части к меньшей равно отношению целого к большей части. «Эту пропорцию называли по-разному – «золотой», «божественной», «золотым сечением», «золотым числом». Я предпочла использовать первое название, так как оно наиболее точно отражает сущность этого понятия.

Огромный интерес у меня и моих сверстников вызвал принцип «золотой пропорции». Эти знания помогают понять, что вне сознания существует нечто вполне материальное, вполне объективной, что, не будучи объективной красотой, вызывает в нас ощущение красоты. «Золотая пропорция» справедлива для любого человека, каким бы он ни был. Мне удалось провести небольшое исследование с помощью своих сверстников, которое помогло доказать этот принцип.

«Золотое сечение» в геометрии

Сейчас невозможно достоверно установить нм человека, впервые открывшего золотую пропорцию, ни время, когда это произошло. Очевидно, ее неоднократно открывали, забывали и открывали заново в разное время и в различных странах. Многие исследователи считают первооткрывателем золотой пропорции греческого математика и философа Пифагора.

С именем Пифагора мы со школы связываем теорему о сторонах треугольника – «теорему квадратов». Эта теорема удивительно красива: «Квадрат гипотенузы равен сумме квадратов катетов». В науке немного отыщешь столь красивых и простых формул.

Многие математические закономерности, как говорят, «лежали на поверхности», их нужно было увидеть человеку с аналитическим умом, мыслящему логически. А в этом нельзя было отказать философам древнего мира; ведь все их научное познание строилось на анализе предметов и явлений, установлении связи между ними. В наше время даже трудно представить, что возможно развитие науки без использования эксперимента, а ведь таковой была наука древнего мира.

Рассмотрим, например, простейший прямоугольный треугольник с отношением катетов 1:2. В этом треугольнике величина малого катета равна 1, а большего – 2. По теореме Пифагора длина гипотенузы в нем равна √5. Этот треугольник был хорошо известен в древнем мире, во многих сооружениях периода преобладают пропорции, равные отношениям катетов и гипотенузы прямоугольного треугольника со сторонами 1:2:√5 .

Отношение сторон a, b, c данного треугольника очень простые и понятные каждому, знающему основы геометрии: a/b = 1:2, c/a = √5:1, c/b = √5/2. Однако из этих величин следует и еще одно отношение (a+b)/b = (1+√5)/2, равное 1,618033. Это и есть золотая пропорция, которую обычно обозначают буквой Ф. Как видно, эта замечательная пропорция лежала буквально на поверхности – ее нужно было только заметить.

В геометрии существуют различные способы построения золотой пропорции, причем характерно, что для построения достаточно взять самые простые геометрические фигуры – квадрат или прямоугольный треугольник с отношением катетов 1:2. Если с середины квадрата провести окружность радиусом, равным диагонали полуквадрата, то на ее пересечении с продолженной стороной квадрата получим отрезок, который меньше стороны квадрата в соответствии с золотой пропорцией. Еще проще построение золотой пропорции в прямоугольном треугольнике 1:2:√5. Достаточно провести две дуги окружности, пересекающиеся в одной точке на гипотенузе, и большой катет будет разделен в соответствии с золотой пропорцией.

Треугольник со сторонами 3:4:5 входит в число целого ряда прямоугольных треугольников, именуемых в древности «божественными», для которых справедливо отношение: a2+b2 = c2, где a, b, c – целые числа. Вот некоторые из этих треугольников:

52=42+32; 132=122+52; 252=242+72.

По существу, закономерности отношений сторон в этих треугольниках и выражают собой теорему, которая позже получила название теоремы Пифагора. Знал ли Пифагор такие треугольники, или открыл их заново, или же, перейдя от этих «божественных» треугольников к другим, распространил указанную формулу на все прямоугольные треугольники, открыв при этом иррациональные числа и золотую пропорцию?

Никто уже не ответит на эти вопросы. В истории науки нередки случаи, когда какие-либо открытия забывались, терялись и вновь возрождались другими учеными, и об их действительном авторстве можно только предполагать. Как указывает Матила Гика, китайцы уже в XI веке до нашей эры были знакомы с теоремой 52=32+42.

Плутарх отмечает, что площадь треугольника со сторонами 5:4:3 равна 6, а кубическое этой площади равно сумме кубов сторон треугольника: 63=53+43+33. Было предложено применять отношение 52=42+32 в числе инвариант для создания первого «логического контакта при наступлении эры межпланетной сигнализации».

Нетрудно доказать, что существует только один прямоугольный треугольник, стороны которого (x, y, z) образуют геометрическую прогрессию: z/y=y/x. В этом треугольнике отношение гипотенузы к малому катету равно золотой пропорции Ф, а два других отношения сторон (z/y и y/x) отвечает корню квадратному из золотой пропорции. Это – удивительный «золотой» треугольник, он является ярким выражением золотой пропорции.

Рассмотрим одно семейство равнобедренных треугольников, построенных по правилам золотой пропорции: остроугольный – с углами 36˚, 72˚ и 72˚ и тупоугольный – с углами 108˚, 36˚ и 36˚. Из рисунка видно, что остроугольный треугольник ABC разбивается на три треугольника золотой пропорции. В них стороны равны: AD=1, DB=Ф, BC=AB=Ф+1=Ф2, AC=AE=Ф.

Интересен еще один замечательный треугольник, в котором проявляется золотая пропорция. В этом треугольнике углы равны 90˚, 54˚ и 36˚, а их отношение составляет 5:3:. В этом прямоугольном треугольнике отношение большего катета к гипотенузе равно половине золотой пропорции Ф/2. Это отвечает равенству Ф/2=cos 36˚. Отсюда вытекает формула, связывающая золотую пропорцию с числом π:

Ф = (√5+1)/2 = 2 cos π/5

Эта простая и по-своему красивая формула связывает число «пи» с золотой пропорцией. Не свидетельствует ли это о фундаментальности золотой пропорции, о ее родстве с таким универсальным числом, как «пи»? Характерно, что в рассмотренном треугольнике отношение углов отвечает отношению небольших целых чисел 5:3:2 (где величина одного угла равна сумме двух других), а отношения сторон несоизмеримы. Что кроется в этой «таинственности числовых соотношений»?

В формуле Ф = (√5+1)/2 = 2 cos π/5 дважды встречается число «пять». И угол 36˚ является углом при вершинах пятиконечного звездчатого многоугольника. Очевидно, не случайно число «пять» у пифагорейцев считалось священным, а пятиугольная звезда – символом союза пифагорейских философов и математиков. Оно же считалось в древности символом жизни. Геометрию пятигранника и звездчатого пятиугольника изучали многие математики.

На рисунке среди отрезков HJ, EH, EJ, EB отношение каждого последующего к предыдущему равно золотой пропорции. Пачоли нашел в пяти Платоновых телах – отрезков EB/EA, AJ/JK, AK/AJ. Здесь же содержится треугольник с углами 90˚, 54˚ и 46˚, который был рассмотрен выше.

В 1509 году в Венеции современник и друг Леонардо да Винчи Лука Пачоли издал книгу «О божественной пропорции». Пачоли нашел в пяти Платоновых телах – правильных многоугольниках (тетраэдр, куб, октаэдр, икосаэдр и додекаэдр) тринадцать проявлений «божественной» пропорции. В главе « О двенадцатом, почти сверхъестественном свойстве» он рассматривает правильный икосаэдр. В каждой вершине икосаэдра сходятся пять треугольников, образуя правильный пятиугольник. Если соединить между собой любые два противоположных ребра икосаэдра, получится прямоугольник, у которого большая сторона так относится к меньшей, как сумма сторон к большой.

Таким образом, золотая пропорция проявляется в геометрии пяти правильных многогранников, которые, по представлениям ученых древности, лежат в основе мироздания. Платон считал, что атомы четырех элементов, из которых построен мир (огня, земли, воздуха и воды), имеют форму правильных выпуклых многогранников – тетраэдра, куба, октаэдра, икосаэдра, а весь мир в целом построен в форме додекаэдра.

Числа Фибоначчи.

Усилием математиков золотая пропорция была объяснена, изучена и глубоко проанализирована. Казалось бы, вопрос исчерпан. Оставалось лишь изучать проявления этой закономерности в природе, искать ее практическое применение. Возможно, так бы и произошло, если бы не появилась в истории математики одна незаменимая задача.

В период Средневековья появление книги по математике, написанной в 1202 году итальянским математиком Леонардо из Пинзы, явилось важным событием в «научной жизни общества». В книге "Liber abacсi" ("Книга об абаке") были собраны известные в то время сведения о математике, приводились примеры решения всевозможных задач. И среди них была простая. Не лишенная практической ценности для предприимчивых итальянцев, задача о кроликах: "Сколько пар кроликов в один год от одной пары рождается?" Далее в задаче поясняется, что природа кроликов такова, что через месяц пара их производит на свет другую пару, а начинают размножаться кролики со второго месяца после своего рождения. В результате решения этой немудреной задачи получился ряд чисел 1, 2, 3, 3, 8, 13, 21, 34, 55, 89, 144 и так далее. Этот ряд чисел был позже назван именем Фибоначчи, так называли Леонардо (Fibonacci – сокращенное filius Bonacci, то есть Боначчи).

Чем же примечательны числа, полученные Леонардо Фибоначчи? Рассмотрим этот ряд чисел: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 277, 610, 987, 1597 и так далее. В этом ряду каждое последующее число является суммой двух предыдущих чисел.

Такие последовательности, в которых каждый член является функцией предыдущих, называют в математике рекуррентными, или возвратными последовательностями. Рекуррентным является и ряд чисел Фибоначчи, а члены этого ряда называют числами Фибоначчи. Оказалось, что они обладают рядом интересных и важных свойств.

Спустя четыре столетия после открытия Фибоначчи ряда чисел И. Кеплер (1571 – 1630) установил, что отношение рядом стоящих чисел в пределе стремится к золотой пропорции. На языке математики это выражается формулой Un+1/Un→Ф при n→ ∞. Здесь Ф=1,61803 является золотой пропорцией.

Через сто лет английский ученый Р. Симпсон математически строго доказал, что отношение рядом расположенных чисел Фибоначчи в пределе стремится к золотой пропорции, равной (√5+1)/2. И лишь в 1843 году математик Ж. Бине нашел формулу для отыскания любого члена ряда чисел Фибоначчи.

Определим отношение рядом расположенных чисел Фибоначчи: оно равно 2, 1,5; 1,66; 1,6; 1,625;1,615. , 1,619, 1,6181 и т. д. Полученные отношения как бы колеблются около постоянной величины, постепенно приближаются к ней, разница между соседними отношениями уменьшается. Это наглядно видно на графике. Отношение рядом расположенных чисел Фибоначчи в пределе стремится к величине, близкой 1,618. , то есть золотой пропорции.

Соотношение рядом стоящих чисел Фибоначчи отражает колебательный процесс, осцилляцию, строго периодическое с уменьшающейся амплитудой уменьшение разницы в отношениях этих чисел, затухающее колебание этих отношений относительно величины Ф – золотой пропорции.

Величина Ф считается иррациональным числом, то есть несоизмеримым его нельзя выразить через отношения целых чисел. Но при развертывании ряда чисел Фибоначчи их отношение будет все ближе к золотой пропорции (точнее, бесконечно близко к ней). Выходит, что рациональная величина Ф равна отношению двух бесконечно больших чисел, то есть она соизмерима. Здесь проявляется еще одна интересная грань взаимосвязи целых чисел Фибоначчи с иррациональной золотой пропорцией.

А теперь сложим расположенные через одно числа Фибоначчи. Получим новый ряд чисел: 3, 4, 7, 11, 18, 29, 47, 123 и т. д. Как видим, получим также рекуррентный ряд чисел; отношение соседних чисел здесь также в пределе стремится к золотой пропорции.

Этот производный рекуррентный ряд чисел можно получить из ряда чисел Фибоначчи и другим способом. При последовательном закономерном делении последующих чисел ряда Фибоначчи на предыдущие получим: 1:1=3; 3:1=3; 8:2=4; 21:3=7; 55:5=11 и т. д. , то есть производимый рекуррентный ряд, получивший название "ряд Люка". Сложив расположенные через одно числа ряда Люка, получим новый производный рекуррентный ряд: 15, 25, 40, 65, 105 и т. д. Разделив числа этого ряда на пять, получим исходный ряд чисел Фибоначчи.

Числа Фибоначчи обладают многими интересными свойствами. Так, сумма всех чисел ряда от первого до Un равна следующему через одно число (Un+2) без единицы. Легко показать и проверить на примерах, что отношение расположенных через одно чисел Фибоначчи стремится к квадрату золотой пропорции, равному 2,618033 Удивительное свойство! Получается, что Ф + 1 = = Ф2. Но ведь это соотношение имеет место в совершенном прямоугольном треугольнике с углом около 51˚50΄. Это же уравнение связывает отрезки целого, разделенного на две части в соответствии с золотой пропорцией. Невидимая, но прочная связь общих закономерностей соединила в логически единую стройную систему совершенные геометрические фигуры, пирамиды Египта, задачу о размножении кроликов

Французский математик Паскаль (1623 – 1662) построил числовую таблицу, имеющую форму треугольника; в ней каждая строчка получается из предыдущей путем удвоения каждого из чисел строчки. Эта таблица получила название "треугольник Паскаля". Сумма чисел n-й строки треугольника Паскаля равна 2n, т. е. суммы чисел в строчках возрастают в степенной зависимости, удваиваясь в каждой последующей строчке.

Такой характер построения треугольника Паскаля отвечает наиболее простому размножению организмов в биологии, например, делению клеток. Каждая клетка в результате деления превращается в две клетки, которые, в свою очередь, делятся на две клетки и т. д.

Треугольник Паскаля обладает многими интересными свойствами. Все строки его симметричны. Между суммами чисел в столбцах установлена следующая зависимость: если из большего числа вычесть рядом стоящее меньшее, получим следующее число в ряду сумм. Установлена связь чисел ряда Фибоначчи с треугольником Паскаля. Если провести диагональ треугольника Паскаля, то суммы чисел на этих диагоналях составят ряд чисел Фибоначчи.

Задача о кроликах, очевидно, выражает некоторую общую закономерность роста, свойственную всем организмам, самой жизни. Поэтому закономерности ряда чисел Фибоначчи и порожденная ими золотая пропорция должны в той или иной форме проявляться в самых различных организмах: в их строении, эволюции, функционировании. И действительно, исследования ученых в самых разнообразных областях природы привели к открытию в них закономерностей, отвечающих числам Фибоначчи и золотой пропорции. Где только не находили числа Фибоначчи! И в картинах художников, и в кардиограмме, и в строении почвы, и в деятельности мозга

Метод золотой пропорции и "метод Фибоначчи" в настоящее время находят применение и в методологии научного исследования. Оказалось, что эти методы являются эффективным средством последовательного поиска оптимальных решений, экстремума некоторых функций. Ведь природа во многих случаях действует по строго очерченной системе, реализуя поиск оптимальных структурных состояний не "вслепую", а более сложно, пользуясь "методом Фибоначчи".

Формула красоты

Сколько художников, поэтов, скульпторов, истинных ценителей прекрасного восхищались красотой человеческого тела! «Красивейшие человеческие тела во всех положениях, смелых до невероятности, стройных до музыки – да это целый мир, перед откровением которого невольный холод восторга и страстного благоговения пробегает по всем жилам», - писал И. С. Тургенев. «Человеческое тело – лучшая красота на земле», - утверждал Н. Г. Чернышевский. «Обнаженное тело кажется мне прекрасным. Для меня оно – чудо, сама жизнь, где не может быть ничего безобразного», - говорил О. Роден.

Эталонами красоты человеческого тела, образцами гармонического телосложения издавна и по праву считаются великие творения скульпторов: Фидия, Поликтета, Мирона, Праксителя. В создании своих творений греческие мастера использовали принцип золотой пропорции. Центр золотой пропорции строения человеческого тела расположился точно в месте пупка.

«Формула красоты» - в самом непосредственном, математическом смысле – стала для многих антропологов целью многолетних трудов. Таких «формул» известно немало.

Уже тысячелетия пытаются люди найти математические закономерности в пропорциях тела человека, прежде всего человека, хорошо сложенного, гармоничного. Гармоничность телосложения создает впечатление о соразмерности всех его частей, которая может быть выражена простыми числовыми соотношениями. Для анализа этих соотношений нужна была единица измерения, какая-то часть тела.

Еще в Древнем Египте за единицу измерения тела принимали длину стопы, в более поздние времена – длину среднего пальца руки. Легко убедиться, что высота человека составляет в среднем 7 длин его стопы. В эпоху Возрождения интерес к изучению пропорций человеческого тела возрос. Леонардо да Винчи предпринял ряд измерений, из которых он вычислил средние размеры человека. В качестве единиц измерений пропорций тела он принял голову, но не всю длину черепа, а только длину лица. А Дюрер принимал за единицу измерения всю длину черепа. Французский анатом Рише установил закон о 7 ½ - кратной длине головы.

Многие пропорции человеческого тела можно выразить отношением целых чисел, если пренебречь некоторой погрешностью. Для этого можно воспользоваться средними статистическими данными населения нашей страны. Эти данные для мужчин и женщин существенно различаются и приводятся раздельно. Вот некоторые из них (для мужчин и женщин): рост 1660 и 1567, длина руки – 723 и 661, длина ноги – 900 и 835, высота линии талии – 1035 и 976, высота колена – 506 и 467, ширина плеч – 380 и 349, рост, сидя – 1310 и 1211, длина бедра – 590 и 568 мм. Используя эти статистические данные, можно рассчитать пропорции различных частей тела, например, по отношению к росту человека. Полученные таким образом пропорции оказались очень близкими к целочисленным отношениям

В середине прошлого века английский ученый Эдинвург построил канон пропорций человеческого тела на основе музыкального аккорда. Интересно, что идеальное, с точки зрения этого канона, мужское тело оказалось, по его мнению, соответствующим мажорному аккорду, а женское – минорному.

Рассчитанные пропорции тела человека расширяют антропометрические данные, дают новые характеристики для анализа и сравнения, но они пока лишены физического содержания. Исключение представляет только отношение роста к высоте линии талии. Это отношение, известное с древних времен, долго изучалось, и считается одним из основных критериев гармонии человеческого тела. Оно получило различные названия: золотое сечение, золотая пропорция, божественное отношение и др. Из многих пропорций, которыми издавна пользовался человек при создании гармонических произведений лишь она, единственная и неповторимая, обладает уникальными свойствами. Мною было проведено исследование, цель которого – выяснить, распространяется ли правило «золотой» пропорции на современных подростков. Данные этой таблицы свидетельствуют о том, что «золотая» пропорция действительно существует.

Золотая пропорция занимает ведущее место в художественных канонах Леонардо да Винчи и Дюрера. В соответствии с этими канонами золотая пропорция отвечает не только делению тела на две неравные части линией талии. Лицо человека было создано природой также по правилу золотой пропорции. Так, высота лица относится к вертикальному расстоянию между дугами бровей и нижней частью подбородка, так же, как расстояние между нижней частью носа и нижней частью подбородка относится к расстоянию между углами губ и нижней частью подбородка. Это отношение равно золотой пропорции.

Пальцы человека состоят из трех фаланг: основных, средних и ногтевых. Длина основных фаланг всех пальцев, кроме большого, равна сумме длин двух остальных фаланг. В этом легко убедиться с помощью несложных измерений. Так, например, длина основной фаланги моего указательного пальца 4,2 см. Длины средней и ногтевой фаланг соответственно 2,3 и 1,9 см. При сложении последних данных мы и получаем длину основной фаланги.

Кроме того, длины всех фаланг каждого пальца соотносятся друг к другу по правилу золотой пропорции.

В эпоху итальянского Возрождения золотая пропорция была возведена в ранг главного эстетического принципа, однако позже она была предана забвению, и около200 лет о ней никто не вспоминал.

В 1850 году немецкий ученый Цейзинг открыл золотую пропорцию снова. Он обнаружил, что все тело человека в целом и каждый отдельный его член связаны математически строгой системой пропорциональных отношений, среди которых золотое сечение занимает важное место. Измерив тысячи человеческих тел, он установил, что средняя пропорция мужского тела близка к 13:8 = 1,625, а женского – к 8:3 = 1,60. Аналогичные значения получены и при анализе антропометрических данных населения России.

Характерно, что пуп делит тело новорожденного на две равные части и пропорции тела лишь постепенно, ко времени завершения роста, достигают своего конечного развития, отвечающего золотой пропорции (существует поверье, что в два года рост ребенка соответствует половине будущего роста взрослого человека). Все это дает основание считать золотую пропорцию некоторой «константой гармонии», идеальным пределом, к которому стремится тело человека в своем развитии. Однако для тела человека характерно не только «стремление» к золотой пропорции, но и отклонение от нее, связанное с половыми и индивидуальными различиями людей, своеобразные «вариации на тему золотой пропорции».

Общепринято мнение, что золотая пропорция является не только мерилом гармонии в природе и в произведениях искусства, но и основой красоты, источником эстетического удовлетворения. Понятие красоты, прекрасного значительно шире, вариантнее, чем понятие гармонии и упорядоченности. Совершенная симметрия и пропорциональность могут не отвечать эталонам красоты, они совершенны, но мертвы, и лишь разнообразные отклонения от этих статичных канонов придают живость, неповторимую индивидуальность, прелесть и грацию творениям природы и художника. Поэтому и понятие красоты человеческого тела выходит за рамки геометрических канонов, но эти каноны составляют некую основу, на которой создается гармоническое и прекрасное тело.

К понятию «золотая пропорция» в наибольшей степени подходит определение «формула красоты». Действительно, эта пропорция обладает наиболее отчетливыми признаками гармоничности прекрасного. Эта пропорция знаменует собой как бы вершину эстетических изысканий, некий предел гармонии природы. Эта пропорция не только является господствующей во многих произведениях искусства, она определяет закономерности развития многих организмов, ее присутствие отмечают почвоведы, химики, геологи и астрономы.

Такая универсальность золотой пропорции не делает ее простой и доступной для изучения. Многое в сущности этой «константы гармоничности» остается неизведанным. Еще неясно, почему Природа предпочла эту пропорцию всем другим – не за ее ли уникальность?

Характерно, что золотая пропорция отвечает делению целого на две неравные части, следовательно, она отвечает асимметрии. Почему же она так привлекательна, часто более привлекательна, чем симметричные пропорции? Очевидно, эта пропорция обладает каким-то особым свойством. Целое можно поделить на бесконечное множество неравных частей, но только одно из таких сечений отвечает золотой пропорции. По-видимому, в этой пропорции скрыта одна из фундаментальных тайн природы, которую еще предстоит открыть.

Но человеческая красота во все времена являлась предметом длительного изучения разных наук. Идеалы красоты не вечны и со сменой эпохи под понятием «красивый человек» подразумевают совершенно разное. Красота человеческого тела биологически целесообразна, но не вечна. Также в ходе работы мне удалось выяснить, что красота человеческого тела биологически целесообразна, но не вечна, что современные идеалы, которые нам навязывают, противоречат биологическим закономерностям.

Золотая пропорция – понятие математическое, ее изучение – это, прежде всего задача науки. Она так же является критерием гармонии и красоты, а это уже категории искусства. Но ведь в конечном итоге искусство – не противник, а союзник науки.

"Золотая пропорция" в растительном мире.

Как во всех частях природы, так и во флоре золотая пропорция есть, и она не осталась незамеченной. Растительный мир довольно разнообразен, изменчив и подвижен. Если число минеральных видов в земной коре исчисляется двумя тысячами, то число видов растений – миллионами. А какое разнообразие форм, видов и окрасок! Казалось бы, между живой и неживой природой нет ничего общего, это скорее антиподы, чем родственники. Но не стоит забывать о том, что живая природа возникла из неживой и должна была по законам наследственности сохранить какие-то черты своей прародительницы.

Мир неживой природы – это, прежде всего мир симметрии. Поэтому симметрия также была унаследована и живой природой. Достаточно взглянуть на растения, и вы увидите строго симметричные цветы и листья, многие плоды и даже сами растения с их симметрично-винтовым расположением листьев на стержне ствола.

Еще в конце прошлого века немецкий ботаник Ф. Людвиг обнаружил, что кривые, описывающие числа краевых цветков в корзинках многих видов растений, не плавные, а ломанные, они имеют многовершинный характер, причем основные максимумы (моды) этих кривых соответствуют числу цветков 3, 5, 8, 13, 21, 34 , то есть образует ряд чисел Фибоначчи. Для получения достаточно достоверных данных Ф. Людвиг исследовал 18 573 цветка. У одного из видов растений оказалось, что основные максимумы числа краевых цветков падают на числа 13, 21 и 34. Кроме основных максимумов, на многовершинном графике видны менее выраженные пики при 26, 28 и 39 цветках.

Установленный Людвигом закон свидетельствует о том, что число органов у растений изменяется не непрерывно, принимая любые значения, а дискретно, скачками, предпочитая одни величины другим, и этими дискретными величинами являются числа Фибоначчи. Особенно четко проявляются числа Фибоначчи в расположении листьев на побегах.

Есть все основания констатировать существование у растений определенного типа изменчивости числа и расположения органов, который математически описывается рядом чисел Фибоначчи, "содержащим алгоритм закономерно изменяющегося шага дискретности – кванта числа органов", как писал В. Шмидт. Растения развиваются явно "по Фибоначчи", стремясь к некоторому пределу, к гармонической организации. Отношение чисел в двух рядах в пределе стремится к величинам 0, 618034 или 0,381966, то есть к частям целого, разделенного на две части по правилу золотой пропорции.

Но не только расположение листьев на стволе растений носит дискретный характер, но и рост растений; растения подчинены внутренней квантованности роста. Здесь проявляются еще мало изученные закономерности временной организации развивающихся растений. При неизменных и благоприятных внешних условиях интенсивности роста изменяется во времени: периоды интенсивного роста сменяются периодами относительного покоя, стабильности состояния. Можно предполагать, что в длительностях периода роста также будет проявляться некоторая закономерность, которая, возможно, связана с развертыванием ряда чисел Фибоначчи во времени. Ведь в развитии растений есть начало и конец, есть качественное различие стадий роста, его направленность к некоторому конечному состоянию.

Неудивительно, что закономерности золотой пропорции и чисел Фибоначчи так широко распространены в природе, проявляются на самых различных уровнях развития. Эти закономерности являются критериями гармонической организации различных систем. В золотой пропорции и числах Фибоначчи – ключ к гармонии систем, "золотой ключик", открывающий дверь в страну гармонии и красоты.

Заключение.

Идея Пифагора выразить законы природы в виде отношений чисел, причем чисел небольших, оказалась удивительно живучей и плодотворной. Уже многие столетия ученые самых различных областей знаний пытаются выразить установленные закономерности простыми формулами и числовыми отношениями

Однако при глубоком изучении оказалось, что природа одновременно и проста и сложна, что эти характеристики находятся в единстве и поиски простоты лишь выражают стремление науки. Если рассудить, то понятно, что люди не могут создавать модели природы такие же сложные, как и сама природа. Их цель – увидеть простое в сложном, не забывая о сложности простого.

Поиск общих закономерностей природы является, очевидно, наиболее увлекательной областью познания. В таких закономерностях и проявляется единство природы и единство наук. Идея такого единства, отраженного в наличии общих количественных и качественных отношений, в существовании общих формул и чисел, сохранила свою актуальность от Пифагора и до наших дней.

Аристотель писал, что у пифагорейцев "число есть сущность всех вещей, и организации Вселенной в ее определениях представляет собой вообще гармоническую систему чисел и их отношения". После Алкмеона в системе пифагорейцев "выступает в качестве универсального ключа к объяснению мира".

Прошли века и тысячелетия после Пифагора, были открыты тысячи важнейших законов и закономерностей, и, как оказалось, многие из них описываются целыми числами и их отношениями.

На протяжении своего существования человек учился у природы в своем творчестве. Он жил в гармонии с ней. Сегодняшний человек далеко ушел от природы, потерял связь с нею. Созданная им "окружающая среда" – мир дисгармонии, мир, чуждый естественной природе человека.

Но времена меняются. Люди начали осознавать, что природа рано или поздно будет утеряна навсегда, поэтому они вновь возвращаются к природе и ищут гармонию с ней, что неизбежно. В природе есть свои законы и закономерности. А человек является частью природы, ее созданием, поэтому он подчиняется ей. Достигнув прежней гармонии с природой, человек придет к новому витку эволюционной спирали развития!

Геометрия - точная и достаточно сложная наука, которая при всем этом является своеобразным искусством. Линии, плоскости, пропорции - все это помогает создавать много действительно прекрасных вещей. И как ни странно, в основе этого лежит именно геометрия в самых разных ее формах. В этой статье мы рассмотрим одну очень необычную вещь, которая непосредственно связанна с этим. Золотое сечение - это именно тот геометрических подход, о котором пойдет речь.

Форма предмета и ее восприятие

Люди чаще всего ориентируются на форму предмета для того, чтобы распознавать его среди миллионов других. Именно по форме мы определяем, что за вещь лежит перед нами или стоит вдали. Мы в первую очередь узнаем людей по форме тела и лица. Поэтому с уверенностью можем утверждать, что сама форма, ее размеры и вид - одна из самых важных вещей в восприятии человека.

Для людей форма чего бы то ни было представляет интерес по двум главным причинам: либо это диктуется жизненной необходимостью, либо же вызывается эстетическим наслаждением от красоты. Самое лучшее зрительное восприятие и ощущение гармонии и красоты чаще всего приходит, когда человек наблюдает форму, в построении которой использовались симметрия и особое соотношение, которое и называется золотым сечением.

Понятие золотого сечения

Итак, золотое сечение - это золотая пропорция, которая также является гармоническим делением. Для того чтобы объяснить это более понятно, рассмотрим некоторые особенности формы. А именно: форма является чем-то целым, ну а целое, в свою очередь, всегда состоит из некоторых частей. Эти части, вероятнее всего, обладают разными характеристиками, по крайней мере разными размерами. Ну а такие размеры всегда находятся в определенном соотношении как между собой, так и по отношению к целому.

Значит, другими словами, мы можем утверждать, что золотое сечение - это соотношение двух величин, которое имеет свою формулу. Использование такого соотношения при создании формы помогает сделать ее максимально красивой и гармоничной для человеческого глаза.

Из древней истории золотого сечения

Соотношение золотого сечения часто используют в самых разных сферах жизни прямо сегодня. Но история этого понятия уходит еще в древние времена, когда только зарождались такие науки, как математика и философия. Как научное понятие золотое сечение вошло в обиход во времена Пифагора, а именно в VI веке до нашей эры. Но еще до того знания о подобном соотношении на практике использовали в Древнем Египте и Вавилоне. Ярким свидетельством этого являются пирамиды, для построения которых использовали именно такую золотую пропорцию.

Новый период

Эпоха Возрождения стала новым дыханием для гармонического деления, особенно благодаря Леонардо да Винчи. Это соотношение все больше начали использовать как в таких как геометрия, так и в искусстве. Ученные и художники стали более глубоко изучать золотое сечение и создавать книги, рассматривающие этот вопрос.

Одна из самых важных исторических работ, связанных с золотой пропорцией, - это книга Луки Панчоли под названием «Божественная пропорция». Историки подозревают, что иллюстрации этой книги были выполнены самим Леонардо до Винчи.

золотой пропорции

Математика дает очень четкое определение пропорции, которое говорит о том, что она является равенством двух соотношений. Математически это можно выразить таким равенством: а:b=с:d, где а, b, с, d - это некоторые определенные значения.

Если рассматривать пропорцию отрезка, разделенного на две части, то можем встретить всего несколько ситуаций:

  • Отрезок разделен на две абсолютно ровные части, а значит, АВ:АС= АВ:ВС, если АВ - это точна начала и конца отрезка, а С - точка, которая и разделяет отрезок на две равные части.
  • Отрезок разделен на две неравные части, которые могут находиться в самом разном соотношении между собой, а значит, здесь они абсолютно непропорциональны.
  • Отрезок разделен так, что АВ:АС= АС:ВС.

Что же касается золотого сечения, то это такое пропорциональное деление отрезка на неравные между собой части, когда весь отрезок относится к большей части, как и сама большая часть относится к меньшей. Существует и другая формулировка: меньший отрезок так относится к большему, как и больший ко всему отрезку. В математическом соотношении это выглядит следующим образом: а:b = b:с или с:b = b:а. Именно такой вид имеет формула золотого сечения.

Золотая пропорция в природе

Золотое сечение, примеры которого мы сейчас рассмотрим, относится к невероятным явлениям в природе. Это очень красивые примеры того, что математика - это не просто цифры и формулы, а наука, которая имеет более чем реальное отражение в природе и нашей жизни вообще.

Для живых организмов одна из главных жизненных задач - это рост. Такое стремление занять свое место в пространстве, по сути, осуществляется в нескольких формах - рост вверх, практически горизонтальное расстилание по земле или закручивание по спирали на некой опоре. И как бы ни было это невероятно, много растений растут в соответствии с золотой пропорцией.

Еще один почти невероятный факт - это соотношения в теле ящериц. Их тело выглядит достаточно приятно для человеческого глаза, и это возможно благодаря тому же золотому соотношению. Если быть точнее, то длина их хвоста относится к длине всего тела как 62: 38.

Интересные факты о правилах золотого сечения

Золотое сечение - это поистине невероятное понятие, а значит, на протяжении всей истории мы можем встретить много действительно интересных фактов о такой пропорции. Представляем вам некоторые из них:

Золотое сечение в человеческом теле

В этом разделе нужно упомянуть очень значимую персону, а именно - С. Цейзинга. Это немецкий исследователь, который провел огромнейшую работу в сфере изучения золотой пропорции. Он опубликовал труд под названием «Эстетические исследования». В своей работе он представил золотое сечение как абсолютное понятие, которое является универсальным для всех явлений как в природе, так и в искусстве. Здесь можно вспомнить золотое сечение пирамиды наряду с гармоничной пропорцией человеческого тела и так далее.

Именно Цейзинг смог доказать, что золотое сечение, по сути, есть средним статистическим законом для человеческого тела. Это было показано на практике, ведь во время своей работы ему пришлось измерять очень много человеческих тел. Историки считают, что в этом опыте принимали участие более двух тысяч людей. По исследования Цейзинга, главный показатель золотого соотношения - это деление тела точкой пупка. Так, мужское тело со средним соотношением 13:8 немного ближе к золотому сечению, чем женское, где число золотого сечения составляет 8:5. Также золотую пропорцию можно наблюдать в других частях тела, таких как, например, рука.

О построении золотого сечения

На самом деле, построение золотого сечения - дело нехитрое. Как мы видим, еще древние люди справлялись с этим довольно легко. Что уже говорить о современных знаниях и технологиях человечества. В этой статье мы не будем показывать, как подобное можно сделать просто на листке бумаги и с карандашом в руках, но с уверенностью заявим, что это, на самом деле, возможно. Более того, сделать это можно далеко не одним способом.

Так как это достаточно несложная геометрия, золотое сечение является довольно простым для построения даже в школе. Поэтому информацию об этом можно легко найти в специализированных книгах. Изучая золотое сечение 6 класс полностью способен понять принципы его построения, а значит, даже дети достаточно умны для того, чтобы осилить подобную задачу.

Золотая пропорция в математике

Первое знакомство с золотым сечением на практике начинается с простого деления отрезка прямой все в тех же пропорциях. Чаще всего это реализуется с помощью линейки, циркуля и, конечно же, карандаша.

Отрезки золотой пропорции выражают как бесконечную иррациональную дробь AE = 0,618..., если АВ принимается за единицу, ВЕ = 0,382... Для того чтобы сделать эти вычисления более практическими, очень часто используют не точные, а приближенные значения, а именно - 0,62 и 0,38. Если же отрезок АВ принимать за 100 частей, то большая его часть будет равна 62, ну а меньшая - 38 частям соответственно.

Главное свойство золотого соотношения можно выразить уравнением: х 2 -х-1=0. При решении мы получаем следующие корни: х 1,2 =. Хотя математика и есть точной и строгой наукой, как и ее раздел - геометрия, но именно такие свойства, как закономерности золотого сечения, наводят таинственность на эту тему.

Гармония в искусстве через золотое сечение

Для того чтобы подвести итоги, рассмотрим коротко то, о чем уже говорили.

В основном под правило золотого соотношения подпадает много образцов искусства, где соблюдается соотношение близкое к 3/8 и 5/8. Это и есть грубая формула золотого сечения. В статье уже очень много упоминалось о примерах использования сечения, но мы еще раз посмотрим на него через призму древнего и современного искусства. Итак, самые яркие примеры из древних времен:


Что касается уже наверняка сознательного использования пропорции, то, начиная с времен Леонардо да Винчи, она вошла в использование практически во всех отраслях жизни - от науки и до искусства. Даже биология и медицина доказали, что золотое соотношение работает даже в живых системах и организмах.

Золотое сечение – это простой принцип, который поможет сделать дизайн приятным для визуального восприятия. В этой статье мы подробно расскажем как и зачем его использовать.

Распространенная в природе математическая пропорция, называемая Золотое сечение, или Золотая середина, основана на Последовательности Фибоначчи (о которой вы, скорее всего, слышали в школе, или читали в книге Дэна Брауна «Код да Винчи»), и подразумевает под собой соотношение сторон 1:1,61.

Такое соотношение сплошь и рядом встречается в нашей жизни (ракушки, ананасы, цветы и т.д.) и поэтому воспринимается человеком как нечто естественное, приятное взгляду.

→ Золотое сечение это взаимосвязь между двумя числами в последовательности Фибоначчи
→ Построение этой последовательности в масштабе дает спирали, которые можно увидеть в природе.

Считается, что Золотое сечение используется человечеством в искусстве и дизайне уже более 4 тысяч лет, а возможно даже больше, если верить ученым, которые утверждают, что древние Египтяне использовали этот принцип при строительстве пирамид.

Знаменитые примеры

Как мы уже говорили, Золотое сечение можно видеть на протяжении всей истории искусства и архитектуры. Вот некоторые примеры, которые только подтверждают обоснованность использования этого принципа:

Архитектура: Парфенон

В древнегреческой архитектуре Золотое сечение использовалось для вычисления идеальной пропорции между высотой и шириной здания, размеров портика, и даже расстояния между колоннами. В дальнейшем, этот принцип был унаследован архитектурой неоклассицизма.

Искусство: Тайная вечеря

Для художников композиция – основа основ. Леонардо да Винчи, как и многие другие художники, руководствовался принципом Золотого сечения: в Тайной Вечере, к примеру, фигуры учеников расположены в нижних двух третях (большее из двух частей Золотого сечения), а Иисус помещен строго по центру между двумя прямоугольниками.

Веб-дизайн: редизайн Twitter в 2010

Креативный директор Twitter Дуг Боуман (Doug Bowman) опубликовал скриншот в своем аккаунте Flickr, объясняя использование принципа Золотого сечения для редизайна 2010 года. «Все, кто интересуется #NewTwitter пропорциями – знайте, все сделано не просто так», сказал он.

Apple iCloud

Иконка сервиса iCloud тоже совсем не случайный набросок. Как объяснил Такамаса Мацумото в своем блоге (оригинальная японская версия ) все построено на математике Золотого сечения, анатомию которого можно увидеть на рисунке справа.

Как построить Золотое сечение?

Построение происходит довольно просто, и начинается с основного квадрата:

Нарисуйте квадрат. Это сформирует длину “короткой стороны” прямоугольника.

Разделите квадрат пополам вертикальной линией так, чтобы получились два прямоугольника.

В одном прямоугольнике нарисуйте линию, объединив противоположные углы.

Разверните эту линию горизонтально так, как это показано на рисунке.

Создайте еще один прямоугольник, используя горизонтальную линию, которую вы рисовали в предыдущих шагах как основу. Готово!

«Золотые» инструменты

Если чертить и вымерять не ваше любимое занятие, предоставьте всю «черную работу» инструментам, которые разработаны специально для этого. С помощью представленных ниже 4-х редакторов вы легко найдете Золотое сечение!

Приложение GoldenRATIO помогает разрабатывать веб-сайты, интерфейсы и макеты в соответствии с Золотым Сечением. Оно доступно в Mac App Store за $ 2,99, и имеет встроенный калькулятор с визуальной обратной связью, и удобную функцию «Избранное», в которой хранятся настройки для повторяющихся задач. Совместимо с Adobe Photoshop.

Этот калькулятор, который поможет вам создать идеальную типографику для сайта в соответствии с принципами Золотой пропорции. Просто введите размер шрифта, ширину содержимого в поле на сайте, и нажмите «Set my type»!

Это простое и бесплатное приложение для Mac и PC. Просто введите число, и он рассчитает для него пропорцию в соответствии с правилом Золотого сечения.

Удобная программа, которая избавит вас от необходимости расчетов и рисования сеток. С ней найти идеальные пропорции проще простого! Работает со всеми графическими редакторами, в том числе и Photoshop. Несмотря на то, что инструмент платный – 49$, есть возможность протестировать пробную версию в течение 30 дней.

Древних греков, художников эпохи Возрождения, астрономов XVII века и архитекторов XXI века объединяло то, что все они использовали золотое сечение , иначе известное как золотая пропорция .

Это число Phi — 1.61803399 — обладает действительно уникальными математическими свойствами, проявляется повсюду в природе, благодаря его использованию художники могут создать идеальные по композиции произведения.

Согласно астрофизику Марио Ливи, некоторые из величайших математиков всех эпох: Пифагор и Евклид в Древней Греции, итальянский математик Леонардо Пизанский в Средневековье и астроном Иоганн Кеплер в эпоху Ренессанса, а также современный учёный, физик Роджер Пенроуз из Оксфорда, провели бесконечно много времени, размышляя над этим особым числом и изучая его свойства. Не только математики увлекались золотым сечением.

Биологи, художники, музыканты, историки, архитекторы, психологи и даже мистики обсуждают причину его вездесущности и привлекательности. Можно с уверенностью сказать, что золотое сечение вдохновило мыслителей всех дисциплин, как никакое другое число в истории математики.

В математике и искусстве золотая пропорция проявляется тогда, когда отношение суммы двух величин к большей из них равно отношению большей величины к меньшей. Когда Золотое сечение осмысляется в двух измерениях, оно, как правило, представлено в виде спирали, которая определяется с помощью серии квадратов и дуг, образующих «золотые прямоугольники».

Спиральная форма выражает динамику роста растений и других природных объектов, золотая пропорция проявляется и в строении человеческого тела. Таким образом, это особое соотношение простых спиралей и прямоугольников свидетельствует о присутствии универсального порядка, лежащего в основе мира, поэтому оно было названо золотым или божественным.

Золотое сечение в истории

Золотое сечение очаровывало западных интеллектуалов, по крайней мере, 2400 лет. Самые ранние известные памятники — статуи и храм Парфенона в Греции (490-430 гг. до н.э.) были построены в соответствии с золотой пропорцией.

Тем не менее, многие утверждают, что она была известна гораздо раньше и что египтяне хорошо разбирались в свойствах этого уникального числа.

По мнению некоторых историков, египтяне считали золотое сечение священным. Они использовали золотое сечение при создании храмов и мест захоронения. Кроме того, египтяне обнаружили, что всё, соответствующее золотому сечению, приятно для глаз. Они использовали его в своей системе письменности и проектировании.

Греческий математик Евклид (ок. 365 - 300 до н. э.), описал то, что он назвал «уникальной средней пропорцией». Тем не менее, золотое сечение стало популярным только в XV веке, когда эстетика стала жизненно важным компонентом жизни в эпоху Возрождения, а искусство и геометрия служили и практическим, и символическим целям.

Известный математик, астроном, астролог Иоганн Кеплер (1571 - 1630 гг.) писал: «В геометрии существуют два сокровища: теорема Пифагора и среднее соотношение; первую мы можем сравнить с мерой золота, второе можно назвать драгоценным камнем».

Золотое сечение в архитектуре

Многие художники и архитекторы создавали свои творения в соответствии с золотой пропорцией в надежде получить лучшие результаты с точки зрения эстетики. Используя любое из золотых соотношений, архитектор может создать дверную ручку, соответствующую двери, которая в свою очередь имеет аналогичное соотношение со стенами и всем помещением в целом, и так далее.

Но более всего золотое сечение проявлено в фасаде зданий-шедевров архитектуры: от Парфенона до Великой мечети Кайруана, от Сиднейского оперного театра до Национальной галереи в Лондоне.

Золотое сечение в природе

Самым удивительным в золотом сечении является то, что оно может рассматриваться как естественное явление в природе. Золотое сечение выражается в расположении ветвей вдоль стволов деревьев, прожилок в листьях. Его можно увидеть в строении скелетов животных и людей, в разветвлении их вен и нервов.

Оно даже может быть замечено в пропорции химических соединений и геометрии кристаллов. По сути, оно вокруг и внутри нас, и по этой причине немецкий психолог Адольф Цейзинг (1810 - 1876 гг.) назвал его «универсальным законом, в котором содержится основной принцип формирования всего, стремление к красоте и полноте в природе и искусстве, который пронизывает, как первостепенный духовный идеал, все структуры, формы и пропорции, будь то космические или индивидуальные, органические или неорганические, акустические или оптические; который полностью реализован в теле человека».

Благодаря уникальным свойствам золотого сечения многие считают его священным или божественным, позволяющим обрести более глубокое понимание красоты и духовности в жизни, увидеть скрытую гармонию и связность во всём, что нас окружает.

Статьи по теме: