Условная вероятность формула. Формула полной вероятности: теория и примеры решения задач

Формула полной вероятности позволяет найти вероятность события A , которое может наступить только с каждым из n исключающих друг друга событий , образующих полную систему, если известны их вероятности , а условные вероятности события A относительно каждого из событий системы равны .

События также называются гипотезами, они являются исключающими друг друга. Поэтому в литературе можно также встретить их обозначение не буквой B , а буквой H (hypothesis).

Для решения задач с такими условиями необходимо рассмотреть 3, 4, 5 или в общем случае n возможностей наступления события A - с каждым событий .

По теоремам сложения и умножения вероятностей получаем сумму произведений вероятности каждого из событий системы на условную вероятность события A относительно каждого из событий системы. То есть, вероятность события A может быть вычислена по формуле

или в общем виде

,

которая и называется формулой полной вероятности .

Формула полной вероятности: примеры решения задач

Пример 1. Имеются три одинаковых на вид урны: в первой 2 белых шара и 3 чёрных, во второй - 4 белых и один чёрный, в третьей - три белых шара. Некто подходит наугад к одной из урн и вынимает из неё один шар. Пользуясь формулой полной вероятности , найти вероятность того, что этот шар будет белым.

Решение. Событие A - появление белого шара. Выдвигаем три гипотезы:

Выбрана первая урна;

Выбрана вторая урна;

Выбрана третья урна.

Условные вероятности события A относительно каждой из гипотез:

, , .

Применяем формулу полной вероятности, в результате - требуемая вероятность:

.

Пример 2. На первом заводе из каждых 100 лампочек производится в среднем 90 стандартных, на втором - 95, на третьем - 85, а продукция этих заводов составляет соответственно 50%, 30% и 20% всех электролампочек, поставляемых в магазины некоторого района. Найти вероятность приобретения стандартной электролампочки.

Решение. Обозначим вероятность приобретения стандартной электролампочки через A , а события, заключающиеся в том, что приобретённая лампочка изготовлена соответственно на первом, втором и третьем заводах, через . По условию известны вероятности этих событий: , , и условные вероятности события A относительно каждого из них: , , . Это вероятности приобретения стандартной лампочки при условии её изготовления соответственно на первом, втором, третьем заводах.

Событие A наступит, если произойдут или событие K - лампочка изготовлена на первом заводе и стандартна, или событие L - лампочка изготовлена на втором заводе и стандартна, или событие M - лампочка изготовлена на третьем заводе и стандартна. Других возможностей наступления события A нет. Следовательно, событие A является суммой событий K , L и M , которые являются несовместимыми. Применяя теорему сложения вероятностей, представим вероятность события A в виде

а по теореме умножения вероятностей получим

то есть, частный случай формулы полной вероятности .

Подставив в левую часть формулы значения вероятностей, получаем вероятность события A :

Пример 3. Производится посадка самолёта на аэродром. Если позволяет погода, лётчик сажает самолёт, пользуясь, помимо приборов, ещё и визуальным наблюдением. В этом случае вероятность благополучной посадки равна . Если аэродром затянут низкой облачностью, то лётчик сажает самолёт, ориентируясь только по приборам. В этом случае вероятность благополучной посадки равна ; . Приборы, обеспечивающие слепую посадку, имеют надёжность (вероятность безотказной работы) P . При наличии низкой облачности и отказавших приборах слепой посадки вероятность благополучной посадки равна ; . Статистика показывает, что в k % случаев посадки аэродром затянут низкой облачностью. Найти полную вероятность события A - благополучной посадки самолёта.

Решение. Гипотезы:

Низкой облачности нет;

Низкая облачность есть.

Вероятности этих гипотез (событий):

;

Условная вероятность .

Условную вероятность снова найдём по формуле полной вероятности с гипотезами

Приборы слепой посадки действуют;

Приборы слепой посадки отказали.

Вероятности этих гипотез:

По формуле полной вероятности

Пример 4. Прибор может работать в двух режимах: нормальном и ненормальном. Нормальный режим наблюдается в 80% всех случаев работы прибора, а ненормальный - в 20% случаев. Вероятность выхода прибора из строя за определённое время t равна 0,1; в ненормальном 0,7. Найти полную вероятность выхода прибора из строя за время t .

Решение. Вновь обозначаем вероятность выхода прибора из строя через A . Итак, относительно работы прибора в каждом режиме (события ) по условию известны вероятности: для нормального режима это 80% (), для ненормального - 20% (). Вероятность события A (то есть, выхода прибора из строя) в зависимости от первого события (нормального режима) равна 0,1 (); в зависимости от второго события (ненормального режима) - 0,7 (). Подставляем эти значения в формулу полной вероятности (то есть, сумму произведений вероятности каждого из событий системы на условную вероятность события A относительно каждого из событий системы) и перед нами - требуемый результат.

Нередко в жизни мы сталкиваемся с тем, что нужно оценить шансы наступления какого-либо события. Стоит ли покупать лотерейный билет или нет, каков будет пол третьего ребенка в семье, будет ли завтра ясная погода или снова пойдет дождь - таких примеров можно привести бесчисленное множество. В самом простом случае следует разделить число благоприятных исходов на общее число событий. Если в лотерее 10 билетов выигрышных, а всего их 50, то шансы получить приз равны 10/50 = 0,2, то есть 20 против 100. А как поступать в том случае, если есть несколько событий, и они тесно связаны между собой? В этом случае нас будет интересовать уже не простая, а условная вероятность. Что это за величина и как ее можно посчитать - об этом как раз и будет рассказано в нашей статье.

Понятие

Условная вероятность - это шансы наступления определенного события при условии, что другое связанное с ним событие уже произошло. Рассмотрим простой пример с бросанием монетки. Если жеребьевки еще не было, то шансы выпадения орла или решки будут одинаковыми. Но если раз пять подряд монетка ложилась гербом вверх, то согласитесь ожидать 6-го, 7-го, а тем более 10-го повторения такого исхода будет нелогично. С каждым повторным разом выпадения орла, шансы появления решки растут и рано или поздно она-таки выпадет.

Формула условной вероятности

Давайте теперь разберемся с тем, как эта величина рассчитывается. Обозначим первое событие через В, а второе через А. Если шансы наступления В отличны от нуля, то тогда будет справедливым следующее равенство:

Р (А|В) = Р (АВ) / Р (В), где:

  • Р (А|В) - условная вероятность итога А;
  • Р (АВ) - вероятность совместного появления событий А и В;
  • Р (В) - вероятность события В.

Слегка преобразовав данное соотношение получим Р (АВ) = Р(А|В) * Р (В). А если применить то можно вывести формулу произведения и использовать ее при произвольном числе событий:

Р (А 1 , А 2 , А 3 ,…А п) = Р (А 1 |А 2 …А п)*Р(А 2 |А 3 …А п) * Р (А 3 |А 4 …А п)… Р (А п-1 |А п) * Р (А п).

Практика

Чтобы было легче разобраться с тем, как рассчитывается условная рассмотрим парочку примеров. Предположим имеется ваза, в которой находятся 8 шоколадных конфет и 7 мятных. По размерам они одинаковы и наугад последовательно вытаскиваются две из них. Какие будут шансы того, что обе из них окажутся шоколадными? Введем обозначения. Пусть итог А означает, что первая конфета шоколадная, итог В - вторая конфета шоколадная. Тогда получится следующее:

Р (А) = Р (В) = 8 / 15,

Р (А|В) = Р (В|А) = 7 / 14 = 1/2,

Р (АВ) = 8 /15 х 1/2 = 4/15 ≈ 0,27

Рассмотрим еще один случай. Предположим, есть двухдетная семья и нам известно, что, по крайней мере, один ребенок является девочкой.

Какова условная вероятность того, что мальчиков у этих родителей пока нет? Как и в предыдущем случае, начнем с обозначений. Пусть Р (В) - вероятность того, что в семье есть хотя бы одна девочка, Р (А|В) - вероятность того, что второй ребенок тоже девочка, Р (АВ) - шансы того, что в семье две девочки. Теперь произведем расчёты. Всего может быть 4 разных комбинаций пола детей и при этом лишь в одном случае (когда в семье два мальчика), девочки среди детей не будет. Поэтому вероятность Р (В) = 3/4, а Р (АВ) = 1/4. Тогда следуя нашей формуле получим:

Р (А|В) = 1/4: 3/4 = 1/3.

Интерпретировать результат можно так: если бы нам не было б известно о поле одного из детей, то шансы двух девочек были бы 25 против 100. Но поскольку мы знаем, что один ребенок девочка, вероятность того, что в семье мальчиков нет, возрастает до одной третьей.

Тема: Понятие условной вероятности в примерах и задачах.


Немного статистики: более 90% студентов, пройдя полный курс теории вероятности, на экзамене не могут решить задачу на теорему умножения вероятностей, на формулу полной вероятности, формулу Байеса, не могут вычислить вероятность гипотез. Вопрос почему? После индивидуальных занятий с данными студентами выяснилось, что студенты пропустили мимо ушей такое важное понятие, как условная вероятность, и тупо пытались применять формулы при решении задач. После дополнительного занятия по теме "Условная вероятность в примерах и задачах" все студенты справились с индивидуальными заданиями.

Напомню вероятность бывает безусловной и условной. В самих названиях уже заключен смысл данных понятий: безусловная вероятность это вероятность события на которое не накладывается ни каких дополнительных условий, условная - значит имеются дополнительные условия.

Рассмотрим два примера:

Пример 1.Бросаем игральную кость, найти вероятность выпадения "6".

Пример 2.Событие то же самое, бросаем игральную кость, найти вероятность выпадения "6", если известно, что выпало четное число.

Вопрос: в каком примере условная вероятность, и в каком безусловная.

Ответ: в примере 1 - безусловная, в примере 2 - условная.

Вопрос: а в чем заключается условие?

Ответ: в том, что выпадет четное число.

Вопрос: по какой формуле будем находить вероятность в примере 1?

Ответ: по формуле классической вероятности.

Ответ: вероятность события это отношение числа благоприятных событий к числу всех возможных, если событие выпадение числа "6" обозначить через А, то запись будет выглядеть так

Вопрос: назовите число благоприятных и число всех возможных событий в первом примере?

Ответ: благоприятным будет только одно событие - это выпадение "6", значит n=1, число всех возможных событий m=6 (1,2,3,4,5,6)

Вопрос: ну и подставить в формулу надеюсь труда не составит.

Ответ:

Займемся решением второго примера, на условную вероятность.

Вопрос: по какой формуле будем находить условную вероятность.
Ответ: тоже по формуле условной вероятности, данная формула отличается от классической только с той лишь разницей, что на наше событие наложено ограничение - всех возможных событий не 6, а 3, потому что в условии сказано: выпало четное число - обозначим данное событие B, значит возможно выпадение "2", "4" или "6", отсюда m=3, число благоприятных событий не изменилось n=1, тогда условная вероятность события А при условии В равна


Условная вероятность может быть записана и так: Р(А/В)=1/3


Пример 3. Из коробки, содержащей 3 белых, 5 чёрных и 7 зеленых шаров наугад взяли 1 шар. Какова вероятность того, что шар оказался чёрного цвета, если известно, что вынутый шар не белый?

Решение по формуле условной вероятности,

или Р(А/В)=m/n


где m - число благоприятных событий, n - число всех возможных событий.
условие - шар не белого цвета, обозначим событие В.

число благоприятных событий - m=5 (черных шаров 5)
число всех возможных событий - n=12 (шар не белый, 5+7=12)
Подставляем в формулу, получаем условную вероятность вынуть черный шар

или Р(А/В)=5/12

Основной вопрос: в чем же проблема в применении понятия условной вероятности?

Ответ: в том, что формула условной вероятности внешне очень похожа на формулу классической вероятности и студенты, не вдумываясь в суть задачи, часто их путают или не понимают разницы.


Ну вот и все, что необходимо знать про условную вероятность. Более сложные задачи получаются когда данная формула комбинируется с теоремой умножения вероятностей. Также данное понятие применяется в формуле полной вероятности и формуле Байеса, но это уже тема следующих занятий.

И вопрос для самостоятельного решения: какая вероятность всегда больше условная или безусловная (если событие одно и то же)?

Условная вероятность

Событие. Пространство элементарных событий. Достоверное событие, невозможное событие. Совместные, несовместные события. Равновозможные события. Полная группа событий. Операции над событиями.

Событие - это явление, о котором можно сказать, что оно происходит или не происходит , в зависимости от природы самого события.

Под элементарными событиями , связанными с определенным испытанием, понимают все неразложимые результаты этого испытания. Каждое событие, которое может наступить в результате этого испытания, можно рассматривать как некоторое множество элементарных событий.

Пространством элементарных событий называется произвольное множество (конечное или бесконечное). Его элементы - точки (элементарные события). Подмножества пространства элементарных событий называются событиями.

Достоверным событием называется событие, которое вследствие данного испытания обязательно произойдет; (обозначается E).

Невозможным событием называется такое событие, которое вследствие данного испытания не может произойти ; (обозначается U). Например, появление одного из шести очков во время одного броска игрального кубика - достоверное событие, а появление 8 очков - невозможное.

Два события называются совместными (совместимыми) в данном опыте, если появление одного из них не исключает появления другого.

Два события называются несовместными (несовместимыми) в данном опыте, если они не могут произойти вместе при одном и том же испытании. Несколько событий называются несовместными, если они попарно несовместны.

Начало формы

Конец формы

Событие - это явление, о котором можно сказать, что оно происходит или не происходит , в зависимости от природы самого события. События обозначаются большими буквами латинского алфавита A, B, C,... Любое событие происходит вследствие испытания . Например, подбрасываем монету - испытание, появление герба - событие; достаем лампу из коробки - испытание, она бракованная - событие; вынимаем наугад шарик из ящика - испытание, шарик оказался черного цвета - событие. Случайным событием называется событие, которое может произойти или не произойти во время данного испытания. Например, вынимая наугад одну карту из колоды, вы взяли туз; стреляя, стрелок попадает в цель. Теория вероятности изучает только массовые случайные события. Достоверным событием называется событие, которое вследствие данного испытания обязательно произойдет; (обозначается E). Невозможным событием называется такое событие, которое вследствие данного испытания не может произойти ; (обозначается U). Например, появление одного из шести очков во время одного броска игрального кубика - достоверное событие, а появление 8 очков - невозможное. Равновозможные события - это такие события, каждое из которых не имеет никаких преимуществ в появлении чаще другого во время многочисленных испытаний, которые проводятся с одинаковыми условиями. Попарно несовместимые события - это события, два из которых не могут произойти вместе. Вероятность случайного события - это отношение числа событий, которые благоприятствуют этому событию, к общему числу всех равновозможных несовместимых событий: P(A) = где A - событие; P(A) - вероятность события; N - общее число равновозможных и несовместимых событий; N(A) - число событий, которые благоприятствуют событию A. Это - классическое определение вероятности случайного события. Классическое определение вероятности имеет место для испытаний с конечным числом равновозможных результатов испытания. Пусть сделано n выстрелов по мишени, из которых оказалось m попаданий. Отношение W(A) = называется относительной статистической частотой наступления события A. Следовательно, W(A) - статистическая частота попадания.

При проведении серии выстрелов (табл.1) статистическая частота будет колебаться около определенного постоянного числа. Это число целесообразно принять за оценку вероятности попадания.

Вероятностью события A называется то неизвестное число P, около которого собираются значения статистических частот наступления события A при возрастании числа испытаний.

Это - статистическое обозначение вероятности случайного события.

Операции над событиями
Под элементарными событиями, связанными с определенным испытанием, понимают все неразложимые результаты этого испытания. Каждое событие, которое может наступить в результате этого испытания, можно рассматривать как некоторое множество элементарных событий. Пространством элементарных событий называется произвольное множество (конечное или бесконечное). Его элементы - точки (элементарные события). Подмножества пространства элементарных событий называются событиями. Все известные отношения и операции над множествами переносятся на события. Говорят, что событие A является частным случаем события B (или B является результатом A), если множество A является подмножеством B. Обозначают это отношение так же, как для множеств: A ⊂ B или B ⊃ A. Таким образом, отношение A ⊂ B означает, что все элементарные события, входящие в A, входят также в B, то есть при наступлении события A наступает также событие B. При этом, если A ⊂ B и B ⊂ A, то A = B. Событие A, которое происходит тогда и только тогда, когда событие A не происходит, называется противоположным событию A. Поскольку в каждом испытании происходит одно и только одно из событий - A или A, то P(A) + P(A) = 1, или P(A) = 1 − P(A). Объединением или суммой событий A и B называется событие C, которое происходит тогда и только тогда, когда или происходит событие A, или происходит событие B, или происходят A и B одновременно. Это обозначается C = A ∪ B или C = A + B. Объединением событий A 1 , A 2 , ... A n называется событие, которое происходит тогда и только тогда, когда происходит хотя бы одно из данных событий. Обозначается объединение событий A 1 ∪ A 2 ∪ ... ∪ A n , или A k , или A 1 + A 2 + ... + A n . Пересечением или произведением событий A и B называется событие D, которое происходит тогда и только тогда, когда события A и B происходят одновременно, и обозначается D = A ∩ B или D = A × B. Совмещением или произведением событий A 1 , A 2 , ... A n называется событие, которое происходит тогда и только тогда, когда происходит и событие A 1 , и событие A 2 , и т.д., и событие A n . Обозначается совмещение так: A 1 ∩ A 2 ∩ ... ∩ A n или A k , или A 1 × A 2 × ... × A n .


Тема № 2 . Аксиоматическое определение вероятности. Классическое, статистическое, геометрическое определение вероятности события. Свойства вероятности. Теоремы сложения и умножения вероятностей. Независимые события. Условная вероятность. Вероятность наступления хотя бы одного из событий. Формула полной вероятности. Формула Байеса

Численная мера степени объективной возможности наступления события называется вероятностью события. Это определение, качественно отражающее понятие вероятности события, не является математическим. Чтобы оно стало таким, необходимо определить его качественно.

Согласно классическому определению вероятность события А равна отношению числа случаев, благоприятствующих ему, к общему числу случаев, то есть:

Где P(A) – вероятность события А.

Число случаев благоприятствующих событию А

Общее число случаев.

Статистическое определение вероятности:

Статистической вероятностью события А называется относительная частота появления этого события в произведённых испытаниях, то есть:

Где - статистическая вероятность события А.

Относительная частота(частость) события А.

Число испытаний, в которых появилось события A

Общее число испытаний.

В отличие от «математической» вероятности , рассматриваемой в классическом определении, статистическая вероятность является характеристикой опытной, экспериментальной.

Если есть доля случаев, благоприятствующих событию А, которая определяется непосредственно, без каких-либо испытаний, то есть доля тех фактически произведённых испытаний, в которых событие А появилось.

Геометрическое определение вероятности:

Геометрической вероятностью события А называется отношение меры области благоприятствующей появлению события А, к мере всех области, то есть:

В одномерном случае:


Следует оценить вероятность попадания точки на CD/

Оказывается эта вероятность не зависит от места нахождения CD на отрезке АВ, а зависит лишь от его длины.


Вероятность попадания точки не зависит ни от форм, ни от месте нахождения В на А, а зависит лишь от площади данного сегмента.

Условная вероятность

Вероятность называется условной , если она вычисляется при определённых условиях и обозначается:

Это вероятность события А. Вычисляется при условии, что событие В уже произошло.

Пример. Производим испытание, извлекаем две карты из колоды: Первая вероятность является безусловной.

Вычисляем вероятность извлечения туза из колоды:

Вычисляем появление 2-тузув из колоды:

А*В – совместное появление событий

теорема умножения вероятностей

Следствие:

Теорема умножения для совместного появления событий имеет вид:

То есть каждая последующая вероятность вычисляется с тем учётом, что все предыдущие условия уже произошли.

Независимость события:

Независимыми называются 2 события, если появление одного не противоречит появлению другого.

Например, если тузы из колоды извлекаются повторно, тогда они между собой независимы. Повторно, то есть карту посмотрели и вернули обратно в колоду.

Совместные и несовместные события:

Совместными называются 2 события, если появление одного из них не противоречит появлению другого.

Теорема сложения вероятностей совместных событий:

Вероятность появления одного из двух совместных событий равна сумме вероятностей этих событий без их совместного появления.

Для трёх совместных событий:

Несовместными называются события, если никакие два из них не могут появиться одновременно в результате однократного испытания случайного эксперимента.

Теорема: Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий.

Вероятность суммы событий:

Теорема сложения вероятностей:

Вероятность суммы конечного числа несовместных событий равна сумме вероятностей этих событий:

Следствие 1:

Сумма вероятностей событий, образующих полную группу равна единице:

Следствие 2:

Замечание: Следует подчеркнуть, что рассмотренная теорема сложения применима только для несовместных событий.

Вероятность противоположных событий:

Противоположными называются два единственно возможных события, образующих полную группу. Одно из двух противоположных событий обозначено через А , другое – через .

Пример: Попадание и промах при выстреле по цели – противоположные события. Если A – попадание, то – промах.

Теорема: Сумма вероятностей противоположных событий равна единице:

Замечание 1: Если вероятность одного из двух противоположных событий обозначена через p, то вероятность другого события обозначают через q Таким образом, в силу предыдущей теоремы:

Замечание 2: При решении задач на отыскание вероятности события A часто выгодно сначала вычислить вероятность события , а затем найти искомую вероятность по формуле:

Вероятность появления хотя бы одного события:

Допустим, что в результате эксперимента может появиться одно, какая-то часть или ни одно событие.

Теорема: Вероятность появления хотя бы одного события из совокупности независимых событий равна разности между единицей и их вероятностью не появления событий .

Формула полной вероятности событий:

Теорема: Если событие F может произойти только при условии появления одного из событий(гипотез) , образующих полную группу, то вероятность события F равна сумме произведений вероятностей каждого из этих событий(гипотез) на соответствующие условные вероятности события F.

Рассмотрим задачу. Студент перед экзаменом выучил из 30 билетов билеты с номерами с 1 по 5 и с 26 по 30. Известно, что студент на экзамене вытащил билет с номером, не превышающим 20. Какова вероятность, что студент вытащил выученный билет?

Определим пространство элементарных исходов: W=(1,2,3,...,28,29,30). Пусть событие А заключается в том, чтостудент вытащил выученный билет: А = (1,...,5,26,...,30,), а событие В - в том, что студент вытащил билет из первых двадцати: В = (1,2,3,...,20)

Событие состоит из пяти исходов: (1,2,3,4,5), и его вероятность равна 5/30. Это число можно представить как произведение дробей 5/20 и 20/30. Число 20/30 – это вероятность события B . Число 5/20 можно рассматривать как вероятность события А при условии, что событие В произошло (обозначим её Р (А /В )). Таким образом, решение задачи определяется формулой

Р (А /В ) = P (А ÇВ ) /Р (B ) (2)

Р (А /В ) называется условной вероятностью события A при условии, что событие В произошло . Формулу (2) можно рассматривать, как определение условной вероятности . Эту же формулу можно переписать в виде

P (А ÇВ ) = Р (А /В )Р (B )(3)

Формула (3) называется формулой умножения вероятностей или теоремой умножения вероятностей, а условная вероятность Р (А /В ) здесь должна восприниматься просто по смыслу.

Пример 2 . Из урны, содержащей 7 белых и 3 черных шаров, наудачу один за другим извлекают (без возвращения) два шара. Какова вероятность того, что первый шар будет белым, а второй черным?

Пусть X – событие, состоящее в извлечении первым белого шара, а Y - событие, состоящее в извлечении вторым черного шара. Тогда событие, заключающееся в том, что первый шар будет белым, а второй - черным. P (Y /X ) =3/9 =1/3 - условная вероятность извлечения вторым черного шара, если первым был извлечен белый. Учитывая, что P (X ) = 7/10, по формуле умножения вероятностей получаем: P () = 7/30

Событие А называется независимым от события В (иначе: события А и В называются независимыми), если Р (А /В )=Р (А ). За определение независимых событий можно принять следствие последней формулы и формулы умножения

P (А ÇВ ) = Р (А ) Р (B )

Докажите самостоятельно, что если А и В - независимые события, то и тоже являются независимыми событиями.

Пример 3 . Найти вероятность того, что при трёх бросках игральной кости три раза выпадет шестёрка. Очевидно, что при каждом броске результат не зависит от результатов предыдущих бросков, и искомая вероятность равна (1/6) 3 = 1/216.

Пример 4 . Определим в условиях этой задачи вероятность того, что при трёх бросках в сумме выпало 4 очка. Выпишем благоприятные исходы: “1–1–2”, “1–2–1”, “2–1–1”. Вероятность каждого из этих исходов равна 1/216. Так как все эти исходы несовместимы, интересующая нас вероятность будет равна 3/216 = 1/72.



Пример 5 . Из колоды карт в 32 листа извлекается одна карта. Пусть А – событие, состоящее в том, что извлечённая карта – дама. Событие В состоит в том, что извлечённая карта пиковой масти. Очевидно, что Р (А ) = 4/32 = 1/8. Вычислим величину вероятность того, что извлечённая карта –дама при условии, что эта карта пиковой масти, то есть Р (А/В ). Очевидно, что Р (А ÇВ ) = 1/32, и Р (В ) = 8/32. Тогда Р (А/В ) = Р (А ÇВ )/ Р (В ) = 1/8, то есть Р (А ) = Р (А/В ). Отсюда следует, что события А и В независимы.

Пусть событие С заключается в том, что извлечённая карта не туз. Покажем, что события А и С зависимы. Очевидно, что Р (А ÇС ) = Р (А ) = 1/8. Р (С ) = 28/32 = 7/8. Отсюда получаем Р (А/С ) = 1/7, и это не равно величине Р (А ), следовательно, события А и С зависимы.

Пример 6 . Рассмотрим задачу, аналогичную задаче из примера 2, но с одним дополнительным условием: вытащив первый шар, запоминаем его цвет и возвращаем шар в урну, после чего все шары перемешиваем. В данном случае результат второго извлечения никак не зависит от того, какой шар – черный или белый появился при первом извлечении. Вероятность появления первым белого шара (событие А ) равна 7/10. Вероятность события В – появления вторым черного шара – равна 3/10. Теперь формула умножения вероятностей дает: P (А ÇВ ) = 21/100.

Извлечение шаров способом, описанным в этом примере, называется выборкой с возвращением или возвратной выборкой.

Следует отметить, что если в задаче с шарами положить количество белых и черных шаров равным соответственно 7000 и 3000, то результаты расчетов тех же вероятностей будут отличаться пренебрежимо мало для возвратной и безвозвратной выборок.

Рассмотрим задачи на применение теорем сложения и умножения вероятностей.

1. Три стрелка стреляют в мишень. Каждый попадает в мишень или не попадает в мишень независимо от результатов выстрелов остальных стрелков. Первый стрелок попадает в мишень с вероятностью 0,9, второй – с вероятностью 0,8, а третий – с вероятностью 0,7. Найти вероятность того, что мишень будет поражена?

Вопрос можно поставить иначе: какова вероятность того, что хотя бы один стрелок попадёт в мишень? Очевидно, что мишень будет поражена, если все трое попадут в мишень, если в мишень попадут любые двое стрелков, а третий не попадёт и т. д. Пусть событие А состоит в том, что хотя бы один из стрелков попал в мишень. Тогда противоположное событие заключается в том, что все трое не попали в мишень . Если первый не попадает в мишень с вероятностью 0,1, второй – с вероятностью 0,2, а третий – с вероятностью 0,3, то по теореме умножения вероятностей Р() = 0,1×0,2×0,3 = 0,006. Тогда Р(А) = 1 – Р() = 0,994.

2. При включении двигатель начинает работать с вероятностью р . а) Найти вероятность того, что двигатель начнёт работать со второго включения.

б) Найти вероятность того, что для запуска двигателя потребуется не более двух включений.

а) Для того, чтобы двигатель начал работать со второго включения, нужно, во-первых, чтобы он не запустился при первом включении (событие А ). Это происходит с вероятностью 1 – р . При втором включении двигатель запустится (событие В ) с вероятностью р . Нас интересует вероятность события А ÇВ . Из условия задачи можно понять, что события А и В независимы. Отсюда P (А ÇВ ) = р (1 – р ).

б) Нас интересует вероятность события, состоящего в том, что двигатель запустится при первом включении или при втором включении. Противоположное событие заключается в том, что двигатель не запустится ни при первом, ни при втором включении. Вероятность этого противоположного события равна (1 – р ) 2 . Отсюда вероятность интересующего нас события равна 1 – (1 – р ) 2 .

3 . В семье Ивановых 4 ребёнка. Известно, что один из детей – мальчик. Найти вероятность того, что все дети – мальчики. Принять вероятность рождения мальчика и вероятность рождения девочки равными 1/2 и не зависящими от того, какого пола дети уже имеются в семье.

Пусть событие В состоит в том, что все дети в семье – мальчики, событие А состоит в том, что в семье есть хотя бы один мальчик (именно так мы должны понимать условие задачи). Нас интересует величина Р (В/А ). Для того, чтобы воспользоваться формулой условной вероятности, надо, во-первых, вычислить P (А ÇВ ). В нашем случае событие А является следствием события В , поэтому P (А ÇВ ) = Р (В ) (смотри объяснение к теме 2). По условию задачи Р (В ) = (1/2) 4 = 1/16. Чтобы вычислить Р (А ), заметим, что событие состоит в том, что все дети в семье –девочки. Очевидно, что Р () = (1/2) 4 = 1/16. Тогда Р (А ) = 1 – Р () = 15/16. Теперь можно воспользоваться формулой для определения условной вероятности Р (В /А ) = P (А ÇВ )/Р (А ). В результате получается Р (В /А ) = (1/16)/(15/16) = 1/15.

Если бы в условии этой задачи был поставлен вопрос “чему равна вероятность того, что все дети мальчики, при условии, что второй ребёнок – мальчик?”, то ответ был бы 1/8.

4 . В урне семь белых и три чёрных шара. Без возвращения извлекаются три шара. Известно, что среди них есть чёрный шар. Найти вероятность того, что другие два шара белые.

Пусть событие А состоит в том, что в выборке есть два белых шара, событие В – в том, что в выборке есть чёрный шар. Всего в условии задачи существует возможных исходов. Отсюда Р (А ÇВ ) = . Чтобы вычислить вероятность Р (В ), заметим, что состоит в том, что все извлечённые шары белые, и Р () = . Искомая вероятность равна ()/(1 – ) = 63/85.

5. Студент знает 20 из 25 вопросов программы. Зачёт сдан, если студент ответит не менее чем на 3 из 4-х вопросов в билете. Взглянув на первый вопрос, студент обнаружил, что знает его. Какова вероятность, что студент сдаст зачёт?

Пусть А - событие, заключающееся в том, что студент сдал экзамен;

В - событие, заключающееся в том, что студент знает первый вопрос в билете.

Очевидно, что Р (В ) =20/25 = 4/5. Теперь необходимо определить вероятность Р (А ÇВ ). Из двадцати пяти вопросов можно составить различных билетов, содержащих четыре вопроса. Все билеты, выбор которых удовлетворял бы и событию А, и событию В , должны быть составлены следующим образом: либо студент знает все вопросы билета (можно составить всего таких билетов), либо студент знает первый, второй и третий вопросы, но не знает четвёртого (можно составить всего 5таких билетов), либо студент знает первый, второй и четвёртый вопросы, но не знает третьего (тоже 5билетов), либо студент знает первый, третий и четвёртый вопросы, но не знает второго (тоже 5билетов). Отсюда получаем, что

Р (А ÇВ ) =

Осталось только найти искомую вероятность р (А/В):

Р (А/В) =

Задачи для самостоятельного решения.

1) . Вероятность попасть в самолёт равна 0,4, вероятность его сбить равна 0,1. Найти вероятность того, что при попадании в самолёт он будет сбит.

2) . Из урны, содержащей 6 белых и 4 чёрных шара, наудачу извлекают по одному шару до появления чёрного шара. Найти вероятность того, что придётся производить четвёртое извлечение, если выборка производится а) с возвращением; б) без возвращения.

3) а) В условиях задачи 1 найти вероятность того, что в мишень попали двое стрелков. б) В условиях задачи 1 найти вероятность того, что в мишень попали не менее двух стрелков.

4) По самолёту производится три выстрела. Вероятность попадания при первом выстреле равна 0,5, при втором – 0,6, при третьем – 0,8. При одном попадании самолёт будет сбит с вероятностью 0,3, при двух – с вероятностью 0,6, при трёх самолёт будет сбит наверняка. Какова вероятность того, что самолёт будет сбит?

5) Вероятность того, что случайным образом выбранный из студенческой группы студент знает английский язык, равна 5/6. Вероятность того, что студент знает французский язык, равна 7/12. Вероятность того, что студент знает и английский и французский языки, равна 1/2. а) Найти вероятность того, что студент не знает французского языка при условии, что он не знает английского. б) Найти вероятность того, что студент знает французский язык при условии, что он знает английский.

Ответы. 1)1/4; 2) а) 0,216; б) 1/6; 3) а) 0,398; б) 0,902; 4) 0,594; 5) а) 0,5; б) 0,3.

Статьи по теме: