Тема размножение рост и индивидуальное развитие организмов. Конспект по биологии размножение и индивидуальное развитие организмов. Существуют особые формы полового размножения, такие как гермафродитизм и партеногенез

PAGE_BREAK--На стадии диплонемы происходит укорачивание, утолщение и взаимное отталкивание сестринских хроматид, в результате чего хроматиды в биваленте почти разъединены. Разделение является неполным по той причине, что в каждой паре хромосом еще не расщеплена центромера. Что касается бивалентов, то они удерживаются на различных местах вдоль их длины с помощью хиазм, которые являются структурами, сформированными между гомологичными хроматидами в результате предыдущего кроссинговера между синаптически связанными гомологами. В хороших препаратах можно наблюдать от одной до нескольких хиазм в зависимости от длины бивалента. Каждая наблюдаемая на этой стадии хиазма представляет собой результат обмена, который встречался между несестринскими хроматидами в течение стадии пахинемы. Поскольку сжатие и отталкивание бивалентов усиливается, хиазмы двигаются к концам хромосом, т. е. происходит терминализация хромосом. В конце диплонемы наступает деспирализация хромосом; гомологи продолжают отталкиваться друг от друга.
На стадии диакинеза, которая сходна с диплотеной, продолжается укорочение бивалентов и наступает ослабление (уменьшение) хиазм, вследствие чего формируются дискретные единицы в виде хроматид (четырех). Непосредственно после завершения этой стадии происходит растворение ядерной мембраны.
В метафазе I биваленты достигают наибольшей конденсации. Становясь овальными, они располагаются в экваториальной части ядра, где формируют экваториальные пластинки мейотической метафазы I. Форма каждого бивалента определяется числом и локализацией хиазм. У мужчин число хиазм на бивалент в метафазе I составляет обычно 1-5. Бивалент XY становится палочковидным в результате одиночной терминально расположенной хиазмы.
В анафазе I начинается движение противоположных центромер к противоположным полюсам клетки. В результате этого происходит разделение гомологичных хромосом. Каждая хромосома состоит теперь из двух хроматид, удерживаемых центромерой, которая не делится и остается интактной. Этим анафаза I мейоза отличается от анафазы митоза, при котором центромера подвергается разделению. Важно заметить, что благодаря кроссинговеру каждая хроматида является генетически различной.
В стадии телофазы I хромосомы достигают полюсов, чем заканчивается первое мейотическое деление. После телофазы I наступает короткая интерфаза (интеркинез), в которой хромосомы деспирализуются и становятся диффузными, или телофаза I переходит прямо в профазу II второго мейотического деления. Ни в одном, ни в другом случае репликации ДНК не отмечается. После первого мейотического деления клетки называют спермат&цитами II порядка. Количество хромосом в каждой такой клетке снижается от 2п до п, но содержание ДНК еще не изменяется.
Второе мейотическое деление осуществляется в течение нескольких фаз (профаза II, метафаза II, анафаза II, телофаза II) и сходно с митотическим делением. В профазе II хромосомы вторичных сперматоцитов остаются у полюсов. В метафазе П центромера каждой из двойных хромосом делится, обеспечивая каждую новую хромосому собственной центромерой. В анафазе II начинается формирование веретена, к полюсу которого двигаются новые хромосомы. В телофазе II второе мейотическое деление заканчивается, в результате чего каждый сперматоцит II порядка дает два сперматида, из которых дифференцируются затем сперматозоиды. Как и во вторичном сперматоците, число хромосом в сперматиде является гаплоидным (п). Однако хромосомы сперматид являются одиночными, тогда как хромосомы вторичных сперматоцитов II являются двойными, будучи построенными из двух хроматид. Следовательно, ядро каждого сперматида имеет одиночный набор негомологичных хромосом. Вторичное мейотическое деление является делением митотического типа (экваториальным делением). Оно разделяет двойные сестринские хроматиды и отличается от редукционного деления, в котором гомологичные хромосомы разделены. Единственное существенное отличие от классического митоза заключается в том, что здесь имеется гаплоидный набор хромосом.
Итак, первое мейотическое деление сперматоцитов I порядка приводит к образованию двух вторичных сперматоцитов (II порядка). Обе хро-матиды структур, образующиеся в результате редукционного деления, являются сестринскими хроматидами. Последние возникают в результате репликации, предшествующей первому мейотическому делению. Второе мейотическое деление каждого вторичного сперматоцита приводит к образованию четырех сперматидов. Таким образом, в типичном мейозе клетки делятся дважды, тогда как хромосомы только один раз
Конечный этап в сперматогенезе связан с дифференциацией, которая заканчивается тем, что каждый из сравнительно больших, сферических неподвижных сперматидов превращается в небольшой вытянутый подвижный сперматозоид.
У большинства взрослых (сексуально зрелых) мужских особей животных сперматогенез происходит в семенниках постоянно или периодически (сезонно). Например, у насекомых для завершения цикла сперматогенеза требуется лишь несколько дней, тогда как у млекопитающих этот цикл затягивается на недели и даже месяцы. У взрослого человека сперматогенез проходит в течение всего года. Время развития примитивных сперматогоний В зрелые сперматозоиды составляет около 74 дней.
Мужские половые клетки, продуцируемые организмами разной видовой принадлежности, характеризуются подвижностью и чрезвычайным разнообразием в размерах и по структуре. Например, длина сперматозоидов D. melanogaster составляет 1,76 мм, что в 300 раз превышает длину сперматозоидов человека. Больше того, длина сперматозоидов D. bifurca составляет более 28 мм, что превышает длину самих насекомых этого вида в двадцать раз.
Каждый сперматозоид человека состоит из трех отделов - головки, средней части и хвоста В головке сперматозоида располагается ядро. В нем содержится гаплоидный набор хромосом. Головка снабжена акросомой, которая содержит литические ферменты, необходимые сперматозоиду для вступления в яйцеклетку. В головке локализуется также две центриоли - проксимальная, которая побуждает деление оплодотворенной сперматозоидом яйцеклетки, и дистальная, которая дает начало аксимальному стержню хвоста. В средней части сперматозоида располагаются базальное тельце хвоста и митохондрии. Хвост (отросток) сперматозоида образован внутренним аксимальным стержнем и внешним футляром, имеющим цитоплазматическое происхождение. Сперматозоиды человека характеризуются значительной подвижностью.
Овогенез - это процесс формирования яйцеклеток. Его функциями являются обеспечение гаплоидного набора хромосом в ядре яйцеклетки и обеспечение питательных потребностей зиготы. Овогенез в своем проявлении в основном сопоставим со сперматогенезом.
У млекопитающих и человека овогенез начинается еще во внутриутробном периоде (до рождения). Овогонии, представляющие собой мелкие клетки с довольно крупным ядром и локализованные в фолликулах яичников, начинают в фолликулах дифференцироваться в первичные овоциты. Последние формируются уже на третьем месяце внутриутробного развития, после чего они вступают в профазу первого мейотического деления. Ко времени рождения девочки все первичные овоциты уже находятся в профазе первого мейотического деления. Первичные овоциты остаются в профазе вплоть до наступления половой зрелости женского индивида. Когда при наступлении половой зрелости фолликулы яичника созревают, мейотическая профаза в первичных овоцитах возобновляется. Первое мейотическое деление для каждой развивающейся яйцеклетки завершается вскоре перед временем овуляции этой яйцеклетки. В результате первого мейотического деления и неравномерного распределения цитоплазмы одна образовавшаяся клетка становится вторичным овоцитом, другая - полярным (редукционным) тельцем.
Вторичное мейотическое деление у человека наступает, когда вторичный овоцит (развивающаяся яйцеклетка) проходит из яичника в фаллопиеву трубу. Однако это деление не завершается до тех пор, пока во вторичный овоцит не проникает ядерное содержимое сперматозоида, что происходит обычно в фаллопиевой трубе. Когда ядро сперматозоида проникает во вторичный овоцит, то последний делится, в результате чего образуется овотида (зрелая яйцеклетка) с пронуклеусом, содержащим одиночный набор из 23 материнских хромосом. У некоторых других видов образуются яйцеклетки, определяющие как мужской пол, так и женский. Важно подчеркнуть, что здесь происходит также расщепление и рекомбинация генов, основу которой создает расхождение хромосом. Другая клетка, образующаяся в результате второго мейотического деления у человека, является вторым полярным тельцем, не способным к дальнейшему развитию. В это время подвергается делению надвое и полярное (редукционное) тельце. Таким образом, развитие одного овоцита первого порядка сопровождается образованием одной овотиды и трех редукционных телец. В яичниках таким путем на протяжении жизни обычно созревает 300-400 ово-цитов, но в месяц созревает лишь один овоцит. В течение дифференциации яйцеклеток формируются мембраны, уменьшается в размере их ядро.
У некоторых видов животных овогенез протекает быстро и непрерывно и приводит к образованию большого количества яйцеклеток.
Вопреки сходству со сперматогенезом овогенез характеризуется некоторыми специфическими особенностями. Питательный материал (желток) первичного овоцита не распределяется поровну между четырьмя клетками, которые образуются в результате мейотических делений. Основное количество желтка сохраняется в одной большой клетке, тогда как полярные тельца содержат очень мало этого вещества. Первые и вторые полярные тельца получают в результате делений те же самые хромосомные наборы, что и вторичные овоциты, но они не становятся половыми клетками. Поэтому яйцеклетки намного богаче питательным материалом по сравнению со сперматозоидами. Особенно сильно это различие проявляется в случае яйцекладущих животных.
Яйцеклетки млекопитающих имеют овальную или несколько вытянутую формуи характеризуются типичными чертами клеточного строения. Они содержат все структуры, характерные для соматических клеток, однако внутриклеточная организация яйцеклетки очень специфична и определяется тем, что яйцеклетка является также и средой, которая обеспечивает развитие зиготы. Одна из характерных особенностей яйцеклеток заключается в сложности строения их оболочек. У очень многих животных различают первичную, вторичную и третичную оболочки яйцеклеток. Первичная оболочка (внутренняя) формируется еще на стадии овоцита. Представляя собой поверхностный слой овоцита, она имеет сложную структуру, т. к. пронизана выростами прилегающих к ней фолликулярных клеток. Вторичная (средняя) оболочка полностью сформирована фолликулярными клетками, а третичная (наружная) образована веществами, представляющими собой продукты секреции желез яйцеводов, через которые проходят яйцеклетки. У птиц, например, третичными оболочками яйцеклеток служат белковая, подскорлуповая и скорлуповая оболочки. Для яйцеклеток млекопитающих характерно наличие двух оболочек. Структура внутриклеточных компонентов яйцеклеток специфична в видовом отношении, а иногда имеет даже индивидуальные особенности.
Оплодотворение
Оплодотворение - это процесс объединения мужской и женской гамет, который приводит к формированию зиготы и последующему развитию нового организма. В процессе оплодотворения происходит установление диплоидного набора хромосом в зиготе, что определяет выдающееся биологическое значение этого процесса.
В зависимости от видовой принадлежности организмов у животных, размножающихся половым путем, различают наружное и внутреннее оплодотворение.
Наружное оплодотворение происходит в окружающей среде, в которую поступают мужские и женские половые клетки. Например, наружным является оплодотворение у рыб. Выделяемые ими мужские (молока) и женские (икра) половые клетки поступают в воду, где и происходит их «встреча» и объединение. Данные об оплодотворении у морских ежей свидетельствуют о том, что уже через 2 секунды после соприкосновения сперматозоидов и яйцеклетки наступают изменения в электрических свойствах плазменной мембраны яйцеклетки. Слияние содержимого гамет наступает через 7 секунд.
Внутреннее оплодотворение обеспечивается переносом сперматозоидов из мужского организма в женский в результате полового акта. Такое оплодотворение встречается у млекопитающих, причем центральным моментом здесь является исход встречи между половыми клетками. Считают, что в яйцеклетку этих животных проникает ядерное содержимое лишь одного сперматозоида. Что касается цитоплазмы сперматозоида, то у одних животных она поступает в яйцеклетку в небольшом количестве, у других совсем не поступает в яйцеклетку.
У человека оплодотворение происходит в верхней части фаллопиевой трубы, причем в оплодотворении, как и у других млекопитающих, участвует лишь один сперматозоид, ядерное содержимое которого поступает в яйцеклетку. Иногда в фаллопиевой трубе может оказаться не одна, а две или более яйцеклеток, в результате чего возможно рождение двоен, троен и т. д. Например, в XVIII в. зарегистрирован случай рождения в России одной матерью (женой крестьянина Федора Васильева) 16 двоен, 7 троен и 4 четверней (всего 69 детей).
В результате оплодотворения в оплодотворенной яйцеклетке восстанавливается диплоидный набор хромосом. Яйцеклетки способны к оплодотворению в течение примерно 24 часов после овуляции, тогда как оплодотворяющая способность сперматозоидов сохраняется до 48 часов.
В механизмах оплодотворения многое еще остается неясным. Предполагают, что проникновение в яйцеклетку ядерного материала лишь одного из множества сперматозоидов связано с изменениями электрических свойств плазматической мембраны яйцеклетки. По вопросу о причинах активации сперматозоидом метаболизма яйцеклетки существует две гипотезы. Одни исследователи считают, что связывание сперматозоида с внешними рецепторами на поверхности клеток представляет собой сигнал, который через мембрану поступает внутрь яйцеклетки и активирует там инозитолтрифосфат и ионы кальция. Другие полагают, что сперматозоиды содержат специальный инициирующий фактор.
Оплодотворенная яйцеклетка дает начало зиготе, развитие организмов через образование зигот называют зигогенезом. Экспериментальные разработки, выполненные в последние годы, показали, что оплодотворение яйцеклеток млекопитающих, включая человека, возможно и в пробирке, после чего зародыши, развившиеся в пробирке, могут быть имплантированы в матку женщины, где они могут развиваться дальше. К настоящему времени известны многочисленные случаи рождения «пробирочных» детей Установлено также, что оплодотворить яйцеклетку человека способны не только сперматозоиды, но и сперматиды. Наконец, возможно оплодотворение яйцеклеток (лишенных искусственно ядер) млекопитающих ядрами их соматических клеток
В отличие от зигогенеза, многие животные организмы способны к размножению в естественных условиях путем партеногенеза (от греч. parthenos - девственница и genesis - рождение). Различают облигатный и факультативный партеногенез. Облигатный партеногенез - это размножение организмов из неоплодотворенной яйцеклетки. Такой партеногенез служит способом размножения животных более 90 видов, включая некоторых позвоночных. Примером облигатного партеногенеза является размножение кавказской скальной породы ящерицы, представленной только женскими особями. Напротив, факультативный партеногенез заключается в том, что яйцеклетки способны развиваться как без оплодотворения, так и после оплодотворения. Факультативный партеногенез в свою очередь бывает женским и мужским. Женский партеногенез част у пчел, муравьев, коловраток, у которых из неоплодотворенных яйцеклеток развиваются самцы. Мужской партеногенез встречается у некоторых изогамных водорослей.
У растений также известны случаи, когда зародыш развивается из не оплодотворенной яйцеклетки. Как отмечено выше, это явление получило название апомикса. Оно очень широко встречается у многих покрытосеменных растений, в т. ч. у культивируемых, таких, как свекла, хлопчатник, лен, табак и другие.
Наряду с естественным партеногенезом различают искусственный (индуцированный) партеногенез, который можно вызвать раздражением яйцеклеток с помощью физических или химических факторов, что ведет к активации яйцеклеток и, как следствие, к развитию неоплодотворенных яиц. Искусственный партеногенез наблюдали в случае животных, принадлежащих ко многим систематическим группам - иглокожим, червям, моллюскам и даже некоторым млекопитающим.
продолжение
--PAGE_BREAK--Известна форма партеногенеза, получившая название андроге-неза (от греч. andros - мужчина, genesis - рождение). Если в яйцеклетке инактивировать ядро и если после этого в нее проникнет несколько сперматозоидов, то из такой яйцеклетки в результате слияния мужских (сперматозоидных) ядер развивается мужской организм. Широко известны эксперименты В. Л. Астаурова (1904-1974), который показал андрогенез на тутовом шелкопряде. Эти опыты заключались в следующем. В яйцеклетках шелкопряда одного вида (Bombyx mandarina) с помощью высокой температуры инактивировали ядра, а затем такие яйцеклетки оплодотворяли сперматозоидами шелкопряда другого вида (В. mori). Проникнув в яйцеклетки, последние сливались между собой, что давало начало новым организмам, которые по своим свойствам оказались отцовскими организмами (В. mori). Скрещивания этих организмов с самками В. mori давало потомство, принадлежащее к В. mori.
Роль партеногенеза и его форм в природе невелика, т. к. он не обеспечивает широких адаптивных возможностей организмов. Однако его использование имеет практическое значение. В частности, Б. Л. Астауровым был разработан способ получения партеноге-нетического потомства у тутового шелкопряда, что широко используется в промышленном производстве шелка.
В отличие от зигогенеза и партеногенеза существует гиногенез (от греч. gyne - женщина), который представляет собой псевдогамию, заключающуюся в том, что сперматозоид встречается с яйцеклеткой и активирует ее, но ядро сперматозоида не сливается с ядром яйцеклетки. В этом случае позволяющее потомство состоит только из женских особей. У отдельных видов круглых червей, рыб и земноводных гиногенез служит нормальной формой размножения, давая потомство, состоящее только из самок. Гиногенез можно вызвать и искусственно с помощью факторов, способных разрушать клеточные ядра (радиации, температуры и др.). В частности, описаны случаи искусственного гиногенеза у тутового шелкопряда, у некоторых видов рыб и амфибий. Получение таких форм может иметь некоторое практическое значение в случае хозяйственно полезных видов.
Как было отмечено выше, оплодотворение у цветковых (покрытосеменных) имеет существенную отличительную особенность в виде двойного оплодотворения (С. Г. Навашин, 1896), которое сводится к тому, что в зародышевом мешке гаплоидная яйцеклетка и дипло-идная центральная клетка оплодотворяются спермиями, в результате чего образуется диплоидный зародыш и триплоидная клетка, развивающаяся в клетки эндосперма
Партеногенез, андрогенез и гиногенез являются формами нарушения полового размножения. Предполагают, что эти формы возникли в ходе эволюции в результате частных эволюционных приспособлений.
Чередование поколений
Организмам, размножающимся только половым путем, характерно чередование гаплоидной и диплоидной фаз в их развитии. У многих организмов, включая млекопитающих, это чередование имеет регулярный характер, и на нем основано сохранение видовых признаков организмов. Диплоидия способствует накоплению разных аллелей. Напротив, для организмов, которые могут размножаться как половым, так и бесполым путем, характерно чередование (смена) поколений, когда одно или несколько бесполых поколений организмов сменяется поколением организмов, размножающихся половым путем.
Различают первичное и вторичное чередование поколений. Первичное чередование поколений отмечается у организмов, развивших в ходе эволюции половой прогресс, но сохранивших способность к бесполому размножению, и заключается в регулярном чередовании полового и бесполого поколений Оно встречается у животных (простейших), у водорослей и у всех высших растений. У простейших классическим примером первичного чередования поколений является бесполое размножение малярийного плазмодия в организме человека (шизогония) и половое - в организме малярийного комара. У растений половое поколение представлено гаметофитом, бесполое - спорофитом. Механизм первичного чередования заключается в том, что на растениях спорофитного поколения развиваются споры, которые на основе мейоза дают гаплоидные мужские и женские гаметофиты. На последних развиваются спермии и яйцеклетки. Оплодотворение яйцеклетки дает начало диплоидному спорофиту. Таким образом, клетки гаметофита содержат гаплоидный набор хромосом, а спорофита - диплоидный набор, т. е. у растений чередование поколений связано со сменой гаплоидного и диплоидного состояний.
Если проследить за соотношением между спорофитом и гаметофитом у растений разного уровня организации, то можно увидеть, что в ходе эволюции развитию подвергался спорофит, тогда как для гаметофиты была характерной редукция. Например, у мхов преобладающим является гаметофит (гаплоидное поколение), на котором живет спорофит. Но уже у папоротникообразных преобладающим является спорофит (диплоидное поколение) в виде хорошо развитого растения со стеблями и корнями, а гаметофит представлен слоем клеток, которые образуют пластину, прикрепляющуюся к почве с помощью ризоидов. Далее, у голосеменных гаметофит уменьшается до небольших количеств клеток, а у покрытосеменных мужской гематофит представлен лишь двумя клетками, женский - семью, тогда как спорофитом у голосеменных являются деревья (сосна, ель и другие), а покрытосеменных - деревья, кустарники, травы.
Между гаметофитом и спорофитом могут быть как сходства по морфологии и продолжительности жизни, так и различия по этим признакам. В первом случае это называют изоморфным чередованием поколений, во втором - гетероморфным.
Вторичное чередование поколений широко встречается у животных. Оно отмечается в формах гетерогонии и метагенеза. Гетерогония заключается в первичном чередовании полового процесса и партеногенеза. Например, у трематод половое размножение регулярно сменяется партеногенезом. У многих других организмов гетерогония зависит от сезона. Так, коловратки, дафнии и тли осенью размножаются путем зигогенеза (путем оплодотворения яйцеклеток и образования зигот), а летом - путем партеногенеза. Метагенез заключается в чередовании полового размножения и вегетативного (бесполового). Например, гидры размножаются обычно почкованием, но при понижении температуры образуют половые клетки. У кишечнополостных на некоторых стадиях развития происходит переход от полового размножения к вегетативному. У некоторых морских кишечнополостных полипоидное поколение правильно чередуется с медузоидным. Для полипоидного поколения характерно размножение так называемой стробиляцией (поперечными перетяжками), для медузоидного - половым путем (оплодотворение яиц, образование личинок и развитие полипов).
Половой диморфизм. Гермафродитизм
Для мужских и женских особей животных характерны различия в специфических фенотипических чертах (размеры, строение тела, окраска и другие свойства), а также в поведении. Различия между самками и самцами по их свойствам называют половым диморфизмом. У животных он встречается уже на низших ступенях эволюционного развития, например у круглых гельминтов, членистоногих, и достигает наибольшего выражения у позвоночных животных, у которых внешние различия между самцами и самками очень выразительны. У растений тех видов, для которых характерно наличие мужских и женских особей, также имеет место половой диморфизм, однако выражен он очень незначительно.
Если у животных мужские и женские половые клетки продуцируются одной и той же особью, имеющей как мужские, так и женские половые железы, то это явление носит название гермафродитизма. Термин «гермафродитизм» является сочетанием греческих имен Гермеса (бог мужской красоты) и Афродиты (богини женской красоты). Различают истинный и ложный гермафродитизм. Истинный гермафродитизм чаще всего встречается у организмов, находящихся на низких уровнях эволюции, например у плоских и кольчатых червей, а также у моллюсков. У плоских червей мужские и женские половые железы функционируют на протяжении всей жизни особи. Напротив, у моллюсков половые железы продуцируют яйцеклетки и сперматозоиды попеременно. Однако явление истинного гермафродитизма встречается и у более организованных существ. В частности, оно встречается у млекопитающих. Например, у свиней иногда отмечается развитие яичников на одной стороне тела, а развитие тестисов на другой, либо происходит развитие комбинированных структур (овотестисов), причем в обоих случаях имеет место синтеза функционально активных яйцеклеток и сперматозоидов. Таких животных относят к «промежуточному» полу, причем большинство особей промежуточного сексуального типа является особями женского пола с двумя ХХ-хромосомами. Некоторые из них характеризуются агрессивным поведением, а это свидетельствует о том, что хотя их тектикулярная ткань не содержит зародышевых клеток, секреция тестостерона, влияющая на поведение, все же имеет место. Аналогичное явление отмечено у коз.
Истинный гермафродитизм встречается и у человека, возникая в результате нарушений развития. Генотипами гермафродитов являются 46ХХ или 46XY, причем большинство случаев относится к XX (около 60%). Генотипы XX чаще всего встречаются у гермафродитов негроидных африканских популяций, тогда как генотипы XY чаще среди японцев. У гермафродитов обоих типов отмечена тенденция в сторону билатеральной ассиметрии гонад. Среди истинных гермафродитов встречаются также хромосомные мозаики, у которых соматические клетки содержат пару хромосом XX, другие - пару хромосом XY.
Известен и ложный гермафродитизм, когда индивидуумы обладают наружными половыми органами и вторичными половыми признаками, характерными для обоих полов, но продуцируют половые клетки лишь одного типа - мужские или женские.
Для большинства цветковых растений характерны гермафродитные цветки, которые обычно называют обоеполыми, поскольку в каждом цветке имеется пестик и тычинки. По этой причине плоды развиваются со всех цветков. Обоеполыми являются пшеница, вишня, яблоня и многие другие виды растений. Помимо обоеполых в ходе эволюции развились растения с разделением полов в пределах одного и того же вида, т. е. возникли однодомность и двудомность растений. Растения, содержащие одновременно пестичные (женские) и тычиночные (мужские) цветки получили название однодомных. У однодомных растений плоды развиваются только из пестичных цветков. Однодомными являются кукуруза, огурец, тыква и другие. Напротив, двудомными являются растения, содержащие либо пестичные, либо тычиночные цветки (в пределах одного и того же вида). У двудомных растений плодоносящими бывают только те, которые имеют пестичные цветки (женские особи). Двудомными являются тополь, клубника и другие виды древесных и травянистых растений.
Гермафродитизм у человека представляет одно из патологических состояний. Что касается растений, то знания об их гермафродитизме чрезвычайно важны для практики сельского хозяйства.
Онтогенез, его типы и периодизация
Онтогенез (от греч. ontos - существо, genesis - развитие) - это полная история (цикл) развития индивидуального организма (животного или растения), начинающаяся с образования давших ему начало половых клеток и заканчивающаяся его смертью. Представления об онтогенезе (индивидуальной истории развития организма) основаны на данных о росте организма, дифференцировке его клеток и морфогенезе. Следовательно, онтогенез есть категория индивидуальная.
В противоположность онтогенезу видовой категорией является филогенез (от греч. phyle - племя, genesis - развитие) под которым со времен Э. Геккеля, впервые обосновавшего этот термин, понимают историю возникновения и развития вида (животных или растений). Между онтогенезом и филогенезом существует тесная связь, которая отражена в так называемом биогенетическом законе (Э. Геккель, Ф. Мюллер), который, как показали исследования, в принципе справедлив. Поскольку онтогенез индивидуума определяется определенными чертами филогенетического развития вида, к которому принадлежит данный индивидуум, то можно сказать, что онтогенез является основой филогенеза, с одной стороны, и результатом филогенеза - с другой.
Изучение фундаментальных основ онтогенеза имеет важное значение для понимания биологии и эволюции организмов. Однако, чтобы лучше узнать современное состояние учения об онтогенезе, рассмотрим вначале, как понимали рост и развитие организма в прошлые времена на примере организма человека.
Первые представления о росте и развитии восходят ко временам античного мира. Еще Гиппократ (460-377 гг. до н. э.) предполагал, что яйцеклетки уже содержат полностью сформированный организм, но в очень уменьшенном виде. Это представление затем нашло продолжение в учении о преформизме (от лат. divformatio - предобразование), которое особенно популярным оказалось в XVII-XVIII вв. Сторонниками преформизма были Гарвей, Мальпиги и многие другие видные биологи и медики того времени. Для преформистов спорный вопрос заключался лишь в том, в каких половых клетках преформирован организм - женских или мужских. Тех, кто отдавал предпочтение яйцеклеткам, называли овистами, а тех, кто большое значение придавал мужским половым клеткам, называли анималькулистами. Преформизм - это метафизическое учение от начала до конца, ибо оно отрицало развитие. Решающий удар преформизму нанес Ш. Бонне (1720-1793), который открыл в 1745 г. партеногенез на примере развития тлей из неоплодотворенных яиц. После этого преформизм уже не мог оправиться и стал терять свое значение.
В античном мире возникло и другое учение, противоположное преформизму и получившее впоследствии название эпигенеза (от греч. epi - после, genesis - развитие). Как и преформизм, эпигенез большое распространение получил также в XVII-XVIII вв. В распространении эпигенеза большое значение имели взгляды К. Ф. Вольфа (1733-1794), обобщенные в его книге «Теория развития» (1759). К. Ф. Вольф считал, что в яйце нет ни переформированного организма, ни его частей, и что яйцо состоит из первоначально однородной массы. В отличие от преформистов взгляды К- Ф. Вольфа и других сторонников эпигенеза для своего времени были прогрессивны, т. к. содержали мысль о развитии. Однако в дальнейшем появились новые моменты. В частности, в 1828 г. К. Бэр опубликовал свой труд «История развития животных», в котором показал, что содержимое яйца не однородно, т. е. структурировано, причем степень структурированности возрастает по мере развития зародыша. Таким образом, К. Бэр показал несостоятельность как преформизма, так и эпигенеза.
В наше время рост организма понимают в качестве постепенного увеличения его массы в результате увеличения количества клеток. Рост можно измерить, построив на основе результатов измерений кривые размеров организма, массы, сухой массы, количества клеток, содержания азота и других показателей. Что же касается дифференциации клеток, то это процесс, благодаря которому одни клетки становятся морфологически, биохимически и функционально отличными от других клеток. Размножение и дифференцировка одних клеток всегда координированы с ростом и дифференцировкой других. Оба эти процесса происходят на протяжении всего жизненного цикла организма. Поскольку дифференцирующиеся клетки изменяют свою форму, а в изменения формы вовлекаются группы клеток, то это сопровождается морфогенезом, представляющим собой совокупность процессов, определяющих структурную организацию клеток и тканей, а также общую морфологию организмов. Таким образом, рост является результатом количественных изменений в виде увеличения количества клеток (массы тела) и качественных - в виде дифференцировки клеток и морфогенеза.
Понятия о росте организмов (размножении клеток), дифференцировке клеток и о морфогенезе позволяют сформулировать заключение о развитии как основополагающей особенности онтогенеза.
Развитие - это качественные изменения организмов, которые определяются дифференцировкой клеток и морфогенезом, а также биохимическими изменениями в клетках и тканях, обеспечивающими в ходе онтогенеза прогрессивные изменения индивидов. В рамках современных представлений развитие организма понимают в качестве процесса, при котором структуры, образовавшиеся ранее, побуждают развитие последующих структур. Процесс развития детерминирован генетически и теснейшим образом связан со средой. Следовательно, развитие определяется единством внутренних и внешних факторов. Онтогенез в зависимости от характера развития организмов типируют на прямой и непрямой, в связи с чем различают прямое и непрямое развитие.
Прямое развитие организмов в природе встречается в виде неличиночного и внутриутробного развития, тогда как непрямое развитие наблюдается в форме личиночного развития.
Под личиночным развитием понимают непрямое развитие, поскольку организмы в своем развитии имеют одну или несколько личиночных стадий. Личиночное развитие широко распространено в природе и характерно для насекомых, иглокожих, амфибий. Личинки этих животных ведут самостоятельный образ жизни, подвергаясь затем превращениям. Поэтому это развитие называют еще развитием с метаморфозами (см. ниже).
продолжение
--PAGE_BREAK--Неличиночное развитие характерно для организмов, развивающихся прямым образом, например для рыб, пресмыкающихся и птиц, яйца которых богаты желтком (питательным материалом). Благодаря этому в яйцах, откладываемых во внешнюю среду, проходит значительная часть онтогенеза, метаболизм зародышей обеспечивается развивающимися провизорными органами, представляющими собой зародышевые оболочки (желточный мешок, амнион, аллантоис).
Внутриутробное развитие также характерно для организмов, развивающихся прямым путем, например для млекопитающих, включая человека. Поскольку яйцеклетки этих организмов очень бедны питательными веществами, то все жизненные функции зародышей обеспечиваются материнским организмом посредством образованных из тканей матери и зародыша провизорных органов, среди которых главным является плацента. Эволюционно внутриутробное развитие является самой поздней формой, однако оно наиболее выгодно для зародышей, т. к. наиболее эффективно обеспечивает их выживание.
Онтогенез подразделяют на проэмбриональный, эмбриональный и постэмбриональный периоды. В случае человека, а иногда и высших животных, период развития до рождения часто называют пренатальным или антенатальным, после рождения - постнатальным. В пределах пренатального периода выделяют начальный (первая неделя развития), зародышевый и плодный периоды. Развивающийся зародыш до образования зачатков органов называют эмбрионом, после образования зачатков органов - плодом.

Промбриональный и эмбриональный периоды
Проэмбриональный (от греч. pro - до, embryon - зародыш) период в индивидуальном развитии организмов связан с образованием половых клеток в процессе гаметогенеза. Как отмечено выше, мужские половые клетки животных по своей структуре не имеют существенных отличий от других (соматических) клеток, тогда как яйцеклетки характеризуются важной отличительной чертой, заключающейся в том, что они содержат очень много желтка. Учитывая количество желтка и топографию его в яйцеклетках, последние классифицируют на три типа, а именно:
1. Изолецитальные клетки. Эти яйцеклетки содержат немного желтка, который локализован равномерно по всей клетке. Изолецитальные яйцеклетки продуцируются иглокожими (морскими ежами), низшими хордовыми (ланцетниками), млекопитающими.
2. Телолецитальные яйцеклетки. Эти яйцеклетки содержат большое количество желтка, который сосредоточен на одном из полюсов - вегетативном. Такие яйцеклетки продуцируются моллюсками, земноводными, рептилиями, птицами. Например, яйцеклетки лягушки состоят из желтка на 50%, яйцеклетки кур (в обиходе куриные яйца) - на 95%. На другом полюсе (анимальном) телолецитальных яйцеклеток сосредоточены цитоплазма и ядро.
3. Центролецитальные яйцеклетки. В этих яйцеклетках желтка немного, но он занимает центральное положение. Периферию таких яйцеклеток занимает цитоплазма. Примером центролецитальных яйцеклеток являются яйцеклетки, продуцируемые членистоногими.
Для проэмбрионального периода характерно также то, что в этот период в гаметах происходят метаболические процессы, связанные с накоплением интенсивно синтезируемых молекул РНК.
Эмбриональный период или эмбриогенез (от греч. embryon - зародыш, genesis - развитие), начинается со слияния ядер мужской и Женской половых клеток, который представляет собой процесс оплодотворения яйцеклеток. У организмов, для которых характерно внутриутробное развитие, эмбриональный период заканчивается рождением потомства, а у организмов, для которых характерны личиночный и неличиночный типы развития, эмбриональный период завершается выходом потомства из яйцевых или зародышевых оболочек соответственно.
В пределах эмбрионального периода различают стадии зиготы, дробления, бластулы, гаструлы, образования зародышевых листков, гистогенез и органогенез. Как отмечено выше, с учетом фактора времени у млекопитающих и человека зародыш до момента формирования зачатков органов называют эмбрионом, а после этого вплоть до рождения называют плодом. У человека развитие эмбриона (зародыша) заканчивается к концу второго месяца. Начиная с 9-й недели, следует плодный период, характеризующийся дальнейшим ростом и развитием организма (плода) во внутриутробном состоянии вплоть до рождения.
Зигота . У млекопитающих зигота образуется в результате оплодотворения, начинающегося с того, что одна из мужских половых клеток достигает яйцеклетки и инициирует ее развитие. В активированной мужской половой клеткой яйцеклетке происходит ряд физических и химических процессов, включая перемещение протоплазмы, что ведет к установлению билатеральной симметрии яйцеклетки, а также перестройку плазматической мембраны, что исключает слияние с яйцеклеткой других (дополнительных) мужских половых клеток. Затем следует слияние плазматических мембран яйцеклетки и спермия с последующим разрушением ядерных мембран, что обеспечивает слияние ядер двух клеток. Ядра клеток сливаются, при этом восстанавливается диплоидный набор хромосом. Оплодотворение яйцеклетки сопровождается активированием в ней синтеза белков. Таким образом, образуется по существу одноклеточный организм.
Дробление . Образование морулы. Дробление представляет собой начальный период развития зиготы (оплодотворенного яйца). Поскольку яйцеклетки обладают центриолями, то оно заключается в делении зиготы путем митоза, которое начинается, например у человека, через 30 часов после осеменения. У человека деление начинается с движения оплодотворенной яйцеклетки по фаллопиевой трубе и заключается в появлении на поверхности яйцеклетки борозды. Первая борозда приводит к образованию двух клеток - двух бластомеров, вторая - четырех бластомеров, третья - восьми бластомеров и т. д. Группа клеток, образовавшаяся в результате последовательных дроблений зиготы, получила название морулы (от греч. morum - тутовая ягода).
Стадию морулы проходят все многоклеточные животные, размножающиеся половым путем. В зависимости от видовой принадлежности деление идет по-разному. Различают радиальное (позвоночные, иглокожие), билатеральное (грибневики, некоторые хордовые) и спиральное дробление (немертины, кольчатые черви, многие моллюски), причем эти формы дробления зависят от плоскостей дробления. Поэтому их морулы состоят из разного количества клеток. Кроме того, из части клеток образуется структура, называемая трофобластом, клетки которого питают зародыш, а благодаря ферментам обеспечивают также внедрение последнего в стенку матки. У человека прикрепление морулы к стенке матки происходит на 7-й день после оплодотворения. Позднее клетки трофобласта отслаиваются от зародыша и образуют пузырек, который заполняется жидкостью тканей матки.
Характерная особенность дробления заключается в том, что при нем значительного роста клеток не происходит. Поэтому биологическое значение этой стадии заключается в том, что из крупной клетки, которой является яйцеклетка, образуются более мелкие клетки, в которых уменьшено отношение цитоплазмы к ядру. В результате этого происходит изменение топологии цитоплазматических комплексов в бластомерах, что создает новое цитоплазматическое окружение для ядер.
Дробление зиготы завершается образованием многоклеточной структуры, получившей название бластулы (от греч. blastos - росток). Эта структура имеет форму пузырька, состоящего из одного слоя клеток, называемого бластодермой. Теперь эти клетки называют эмбриональными. По размерам бластула сходна с яйцеклеткой. В период дробления увеличивается количество ядер, возрастает общее количество ДНК. В конце стадии бластулы синтезируется также небольшое количество мРНК и тРНК, но новые рибосомы и рибосомная РНК до начала гаструляции еще не обнаруживаются, либо если обнаруживаются, то в ничтожных количествах.
Гаструляция. Гаструляция (от греч. gastre - полость сосуда) - это следующий за образованием бластулы процесс движения эмбриональных клеток, который сопровождается формированием двух или трех (в зависимости от вида животных) слоев зародыша или так называемых зародышевых листков
Гаструляция характеризуется увеличением интенсивности обмена по сравнению с дроблением в 2-3 раза. Резко возрастает синтез мРНК, рРНК, рибосом и белков.
Развитие (гаструляция) изолецитальных яиц происходит путем инвагинации (впячивания) вегетативного полюса внутрь бластулы, в результате чего противоположные полюса почти сливаются, а бла-стоцель (полость бластулы) почти исчезает либо полностью исчезает. Внешний слой клеток зародыша получил название эктодермы (от греч. ectos - снаружи, derma - кожа) или наружного зародышевого листка, тогда как внутренний - энтодермы (от греч. entos - внутри) или внутреннего зародышевого листка. Образующаяся при этом полость получила название гастроцели, или первичной кишки, вход в которую называют бластопором (первичным ртом).
Развитие двух зародышевых листков характерно для губок и кишечнополостных. Однако для хордовых в период гаструляции характерно развитие третьего зародышевого листка - мезодермы (от греч. mesos - средний), образующегося между эктодермой и энтодермой
Гаструляция является необходимым пререквизитом для последующих стадий развития, поскольку она приводит клетки в положение, открывающее возможность формировать органы. Дифференцированный на три эмбриональных закладки зародышевый материал дает начало всем тканям и органам развивающегося зародыша.
Гистогенез и органогенез
Развитие (дифференцировка) зародышевых листков в ходе эмбриогенеза сопровождается тем, что из них формируются различные ткани и органы. В частности, из эктодермы развиваются эпидермис кожи, ногти и волосы, сальные и потовые железы, нервная система (головной мозг, спинной мозг, ганглии, нервы), рецепторные клетки органов чувств, хрусталик глаза, эпителий рта, носовой полости и анального отверстия, зубная эмаль. Из энтодермы развиваются эпителий пищевода, желудка, кишек, желчного пузыря, трахеи, бронхов, легких, мочеиспускательного канала, а также печень, поджелудочная железа, щитовидная, паращитовидная и зобная железы. Из мезодермы развиваются гладкая мускулатура, скелетные и сердечные мышцы, дерма, соединительная ткань, кости и хрящи, дентин зубов, кровь и кровеносные сосуды, брыжейка, почки, семенники и яичники. У человека первыми обособляются головной и спинной мозг. Через 26 дней после овуляции длина человеческого зародыша составляет около 3,5 мм. При этом уже видны зачатки рук, но зачатки ног только вступают в развитие. Через 30 дней после овуляции длина зародыша равна уже 7,5 мм. В это время уже можно различить сегментацию зачатков конечностей, глазные бокалы, полушария головного мозга, печень, Желчный пузырь и даже разделение сердца на камеры.
У восьминедельного зародыша человека при длине его около 40 мм и весе около 5 г появляются почти все структуры тела. Органогенез заканчивается к концу эмбрионального периода. В это время эмбрион по внешнему виду приобретает черты сходства с человеком.
Длина 12 недельного человеческого плода составляет уже около 87 мм, а масса около 45 г. Продолжается дальнейший рост и развитие плода. Например, на 4-м месяце развития появляются волосы, а на 20-й неделе начинают образовываться клетки крови.
Если дефинитивное ротовое отверстие образуется на месте первичного рта (бластопора), то этих животных называют первичноротыми (черви, моллюски, членистоногие). Если же дефинитивный рот образуется в противоположном месте, то этих животных называют вторичноротыми (иглокожие, хордовые).
Для обеспечения связи зародыша со средой у него развиваются так называемые провизорные органы, которые существуют временно. В зависимости от типа яйцеклеток провизорными органами являются разные структуры. У рыб, рептилий и птиц провизорным органом является желточный мешок. У млекопитающих желточный мешок закладывается в начале эмбриогенеза, но не развивается. Позднее он редуцируется. В ходе эволюции у рептилий, птиц и млекопитающих развились зародышевые оболочки, обеспечивающие защиту и питание эмбрионов (рис. 91). У млекопитающих, в т. ч. у человека, эти зародышевые оболочки являются листками ткани, развивающимися из тела эмбриона. Существуют три такие оболочки - амнион, хорион и аллантоис. Наружная оболочка эмбриона называется хорионом. Она врастает в матку. Место наибольшего врастания в матку называется плацентой. Зародыш с плацентой связан через пуповину или пупочный канатик, в котором имеются кровеносные сосуды, обеспечивающие плацентарное кровообращение. Амнион развивается из внутреннего листка, а аллантоис развивается между амнионом и хорионом. В пространстве между эмбрионом и амнионом, которое называется амниотической полостью, содержится жидкость (амниотическая). В этой жидкости находится эмбрион, а затем и плод до самого рождения. Метаболизм плода обеспечивается через плаценту.
В основе формообразующего взаимодействия частей эмбриона лежат определенным образом скоординированные процессы обмена веществ. Закономерностью развития является гетерохронность, под которой понимают разное во времени образование закладок органов и разную интенсивность их развития. Быстрее развиваются те органы и системы, которые должны раньше начать функционировать. Например, у человека зачатки верхних конечностей развиваются быстрее, чем зачатки нижних.
Большое влияние на развитие зародыша и плода оказывают условия жизни матери. Зародыш чрезвычайно чувствителен к разным воздействиям. Поэтому различают так называемые критические периоды, т. е. периоды, в которых зародыши, а потом и плоды наиболее чувствительны к повреждающим факторам. В случае человека критическими периодами эмбрионального онтогенеза являются первые дни после оплодотворения, время образования плаценты и роды, а повреждающими факторами являются алкоголь, токсические вещества, недостаток кислорода, вирусы, бактерии, патогенные простейшие, гельминты и другие факторы. Эти факторы обладают терратогенным действием и ведут к уродствам, нарушениям нормального развития.
Еще со времен Гиппократа (V в. д. н. э.) обсуждается вопрос о причинах, которые инициируют рождение плода. В частности, сам Гиппократ предполагал, что развитие плода инициирует собственное рождение. Новейшие экспериментальные работы английских исследователей, выполненные на овцах, показали, что у овец инициация окотов контролируется комплексом гипоталамус + гипофиз + надпочечники плодов. Повреждения ядер гипоталамуса, удаление передней доли гипофиза или надпочечников пролонгирует беременности овец. Напротив, введение овцам аденокортикотропного гормона (секрета передней доли гипофиза) или кортизола (секрета надпочечников) сокращает сроки их беременностей.
Довольно частым нарушением развития является разделение зародыша на очень ранней стадии развития, что сопровождается развитием однояйцевых (моно-зиготных) близнецов Известны также и так называемые сиамские близнецы, представляющие собой неразделенные организмы. Неразделенность встречается разной - от незначительного соединения до почти полного слияния двух организмов с разделенными головами или ногами. Иногда из двух сиамских близнецов один нормален, но другой чрезвычайно изменен, будучи прикрепленным к нормальному, являясь, по существу, паразитом.
Итак, в процессе развития высших эукариотов одиночная оплодотворенная клетка-зигота в ходе дальнейшего развития в результате митоза дает начало клеткам разных типов - эпителиальным, нервным, костным, клеткам крови и другим, которые характеризуются разнообразием морфологии и макромолекулярного состава. Однако для клеток разных типов характерно и то, что они содержат одинаковые наборы генов, но являются высокоспециализированными, выполняя лишь одну или несколько специфических функций, т.е. одни гены «работают» в клетках, другие неактивны. Например, только эритроциты специфичны в синтезе и хранении гемоглобина.
Точно так лишь клетки эпидермиса синтезируют кератин. Поэтому давно возникли вопросы о генетической идентичности ядер соматических клеток и о контрольных механизмах развития оплодотворенных яйцеклеток как пререквизита в познании механизмов, лежащих в основе дифференцировки клеток.
Начиная с 50-х годов во многих лабораториях были выполнены эксперименты по успешной пересадке ядер соматических клеток в яйцеклетки, искусственно лишенные собственных ядер. Исследование ДНК из ядер разных дифференцированных клеток показало, что почти во всех случаях геномы содержат одинаковые наборы последовательностей нуклеотидных пар. Известны лишь исключения, когда эритроциты млекопитающих теряют свои ядра в течение последней стадии дифференцировки. Но к этому времени пулы стойких гемоглобиновых мРНК уже синтезированы, так что ядра больше не нужны эритроцитам. Другими примерами служат гены иммуноглобулинов и Т-клеток, модифицируемые в ходе развития.
продолжение
--PAGE_BREAK--Одним из крупных этапов в направлении познания контрольных механизмов эмбрионального онтогенеза стали результаты экспериментов, выполненных в 1960-70 гг. английским исследователем Д. Гёрдоном с целью выяснить, обладают ли ядра соматических клеток способностью обеспечивать дальнейшее развитие яйцеклеток, если эти ядра ввести в яйцеклетки, из которых предварительно удалены собственные ядра. приведена схема одного из этих экспериментов, в котором ядра соматических клеток головастика пересаживали в яйцеклетки лягушки с предварительно удаленными ядрами. Эти эксперименты показали, что ядра соматических клеток действительно способны обеспечивать дальнейшее развитие яйцеклеток, т. к. они оказались способными оплодотворять яйцеклетки и «заставляли» их развиваться дальше. Этим была показана возможность клонирования животных.
Позднее другими исследователями были выполнены эксперименты, в которых было показано, что перенос отдельных бластомеров из 8- и 16-дневных эмбрионов овец одной породы в безъядерную половину яйцеклетки (после рассечения последней пополам) другой породы сопровождалось формированием жизнеспособных эмбрионов с последующим рождением ягнят.
В начале 1997 г. английскими авторами было показано, что введение в искусственно лишенные ядра яйцеклеток овец ядер соматических клеток (клеток эмбрионов, плодов и вымени взрослых овец), а затем имплантация оплодотворенных таким образом яйцеклеток в матку овец сопровождается возникновением беременности с последующим рождением ягнят.
Оценка этих результатов показывает, что млекопитающих можно размножать асексуальным путем, получая потомство животных, клетки которых содержат ядерный материал отцовского или материнского происхождения в зависимости от пола овцы-донора, в таких клетках лишь цитоплазма и митохондрии имеют материнское происхождение. Это заключение имеет чрезвычайно важное общебиологическое значение, расширяет наши взгляды на потенциал размножения животных. Но важно также добавить, что речь идет о генетических манипуляциях, которые в природе отсутствуют. С другой стороны, в практическом плане эти генетические манипуляции представляют собой прямой путь клонирования высокоорганизованных животных с заданными свойствами, что имеет важное экономическое значение. В медицинском плане этот путь, возможно, будет использован в будущем для преодоления мужского бесплодия.
Итак, генетическая информация, необходимая для нормального развития эмбриона, не теряется в течение дифференцировки клеток. Другими словами, соматические клетки обладают свойством, получившим название тотипотентности, т. е. в их геноме содержится вся информация, полученная ими от оплодотворенной яйцеклетки, давшей им начало в результате дифференциации. Наличие этих данных с несомненностью означает, что дифференциация клеток подвержена генетическому контролю.
Установлено, что интенсивный белковый синтез, следующий за оплодотворением, у большинства эукариотов не сопровождается синтезом мРНК. Изучение овогенеза у позвоночных, в частности. У амфибий, показало, что интенсивная транскрипция происходит еще в течение профазы I (особенно диплотены) мейоза. Поэтому генные транскрипты в форме молекул мРНК или про-мРНК сохраняются в яйцеклетках в бездействующем состоянии. Установлено, что у эмбриональных клеток имеет место, так называемое ассиметричное деление, заключающееся в том, что деление эмбриональной клетки дает начало двум клеткам, из которых лишь одна наследует белки, принимающие участие в транскрипции. Таким образом, неравное распределение транскрипционных факторов между дочерними клетками ведет к экспрессии в них разных наборов генов после деления, т. е. к дифференциации клеток.
У амфибий и, возможно, у большинства позвоночных, генетические программы, контролирующие раннее развитие (до стадии бластулы), устанавливается еще в течение овогенеза. Более поздние стадии развития, когда начинается клеточная дифференциация (примерно со стадии гаструлы) нуждаются в новых программах для экспрессии генов. Таким образом, дифференцировка клеток связана с перепрограммированием генетической информации в том или ином направлении.
Характерная особенность дифференцировки клеток заключается в том, что она необратимо ведет к тому или иному типу клеток. Этот процесс носит название детерминации и также находится под генетическим контролем, а как сейчас предполагают, дифференциация и детерминация клеток регулируется взаимодействием клеток на основе сигналов, осуществляемых пептидными ростовыми факторами через тирозинкиназные рецепторы. Вероятно, существует много таких систем. Одна из них заключается в том, что дифференциация мышечных и нервных клеток регулируется нейрорегулинами, представляющими собой мембранные белки, действующие через один или более тирозинкиназных рецепторов.
Генетический контроль детерминации демонстрируется также существованием, так называемых гомейотропных или гомеозисных мутаций, которые, как показано у насекомых, вызывают изменения при детерминации в специфических имагинальных дисках. В результате некоторые части тела развиваются не на своих местах. Например, у дрозофил мутации трансформируют детерминацию антенного диска в диск, который развивается в аппендикс конечности, протянутой от головы. У насекомых из рода Ophthalmoptera структуры крыльев могут развиваться из диска для глаз. У мышей показано существование генного кластера (комплекса) Нох, который состоит из 38 генов и контролирует развитие конечностей.
Самостоятельное значение имеет вопрос о регуляции активности генов в период эмбрионального развития. Считают, что в ходе дифференцировки гены действуют в разное время, что выражается в транскрипции в разных дифференцированных клетках разных мРНК, т. е. имеет место репрессия и дерепрессия генов. Например, количество генов, транскрибируемых в РНК в бластоцитах морского ежа, равно 10%, в клетках печени крыс - тоже 10%, а в клетках тимуса крупного рогатого скота - 15%. Предполагают, что в контроле транскрипционного статуса генов принимают участие негистоновые белки. В пользу этого предположения свидетельствуют следующие данные. Когда хроматин клеток в фазе транскрибируется в системе in vitro, то синтезируется только гистоновая мРНК, а вслед за нею и гистоны. Напротив, когда используют хроматин клеток из G1-фазы, то никакой гистоновой мРНК не синтезируется. Когда же негистоновые белки удаляются из хроматина G1-фазы и замещаются негис-тоновыми хромосомными белками, синтезированными в фазе S, то после транскрипции такого хроматина in vitro синтезируется гистоновая мРНК. Больше того, когда негистоновые белки происходят из G1-фазы клеток, а ДНК и гистоны из S-фазы клеток, никакой гистоновой мРНК не синтезируется. Эти результаты показывают, что содержащиеся в хроматине негистоновые белки определяют возможность транскрипции генов, кодирующих гистоны. Поэтому считают, что негистоновые хромосомные белки могут играть важную роль в регуляции и экспрессии генов у эукариот.
Имеющиеся данные позволяют считать, что в регуляции транскрипции у животных принимают участие белковые и стероидные гормоны. Белковый (инсулин) и стероидные (эстрогон и тестостерон) гормоны представляют собой две сигнальные системы, используемые в межклеточных коммуникациях. У высших животных гормоны синтезируются в специализированных секреторных клетках. Освобождаясь в кровяное русло, они поступают в ткани, поскольку молекулы белковых гормонов имеют относительно крупные размеры, то они не проникают в клетки. Поэтому их эффекты обеспечиваются белками-рецепторами, локализованными в мембранах клеток-мишеней, и внутриклеточными уровнями циклического АМФ (цАМФ). Напротив, стероидные гормоны являются малыми молекулами, вследствие чего легко проникают в клетки через мембраны. Оказавшись внутри клеток, они связываются со специфическими рецепторными белками, которые имеются в цитоплазме только клеток-мишеней. Как считают, комплексы гормон + белковый рецептор, концентрируясь в ядрах клеток-мишеней, активирует транскрипцию специфических генов через взаимодействие с определенными негистоновыми белками, которые связываются с промоторными районами специфических генов. Следовательно, связывание комплекса гормон + белок (белковый рецептор) с негистоновыми белками освобождает промоторные районы для движения РНК-полимеразы. Обобщая данные о генетическом контроле эмбрионального периода в онтогенезе организмов, можно заключить, что его ход контролируется дифференциальным включением и выключением действия генов в разных клетках (тканях) путем их дерепрессии и репрессии.
Постэмбриональный период
После появления организма на свет начинается его постэмбриональное развитие (постнатальное для человека), которое у разных организмов протекает от нескольких дней до сотен лет в зависимости от их видовой принадлежности. Следовательно, продолжительность жизни - это видовой признак организмов, не зависящий от уровня их организации
В постэмбриональном онтогенезе различают ювениальный и пубертатный периоды, а также период старости, заканчивающийся смертью.
Ювенильный период . Этот период (от лат. juvenilis - юный) определяется временем от рождения организма до полового созревания. У разных организмов он протекает по-разному и зависит от типа онтогенеза организмов. Для этого периода характерно либо прямое, либо непрямое развитие.
В случае организмов, для которых характерно прямое развитие (многие беспозвоночные, рыбы, пресмыкающиеся, птицы, млекопитающие, человек), вылупившиеся из яйцевых оболочек или новорожденные сходны со взрослыми формами, отличаясь от последних лишь меньшими размерами, а также недоразвитием отдельных органов и несовершенными пропорциями тела
Характерной особенностью роста в ювенильный период организмов, подверженных прямому развитию, является то, что происходит увеличение количества и размеров клеток, изменяются пропорции тела. Рост разных органов человека неравномерен. Например, рост головы заканчивается в детстве, ноги достигают пропорциональной величины примерно к 10 годам. Наружные половые органы очень быстро растут в возрасте 12-14 лет. Различают определенный и неопределенный рост. Определенный рост характерен для организмов, которые к определенному возрасту прекращают свой рост, например, насекомые, млекопитающие, человек. Неопределенный рост характерен для организмов, которые растут всю жизнь, например, моллюски, рыбы, земноводные, рептилии, многие виды растений.
В случае непрямого развития организмы претерпевают превращения, называемые метаморфозами (от лат. metamorphosis - превращение). Они представляют собой видоизменения организмов в процессе развития. Метаморфозы широко встречаются у кишечнополостных (гидры, медузы, коралловые полипы), плоских червей (фасциолы), круглых червей (аскариды), моллюсков (устрицы, мидии, осьминоги), членистоногих (раки, речные крабы, омары, креветки, скорпионы, пауки, клещи, насекомые) и даже у некоторых хордовых (оболочечники и земноводные). При этом различают полные и неполные метаморфозы. Наиболее выразительные формы метаморфозов наблюдают у насекомых, которые подвергаются как неполным, так и полным метаморфозам.
Неполное превращение - это такое развитие, при котором из яйцевых оболочек выходит организм, строение которого сходно со строением взрослого организма, но размеры намного меньше. Такой организм называют личинкой. В процессе роста и развития размеры личинок увеличиваются, но имеющийся хитипизированный покров мешает дальнейшему увеличению размеров тела, что приводит к линьке, т. е. сбрасыванию хитинизированного покрова, под которым находится мягкая кутикула. Последняя расправляется, и это сопровождается увеличением размеров животного. После нескольких линек животное достигает зрелости. Неполное превращение характерно, например, в случае развития клопов
Полное превращение - это такое развитие, при котором из яйцевых оболочек освобождается личинка, существенно отличающаяся по строению от взрослых особей. Например, у бабочек и многих насекомых личинками являются гусеницы. Гусеницы подвержены линьке, причем могут линять по нескольку раз, превращаясь затем в куколки. Из последних развиваются взрослые формы (имаго), которые не отличаются от исходных
У позвоночных метаморфозы встречаются среди земноводных и костных рыб. Для личиночной стадии характерно наличие провизорных органов, которые либо повторяют признаки предков, либо имеют явно приспособительное значение. Например, для головастика, являющегося личиночной формой лягушки и повторяющего признаки исходной формы, характерны рыбообразная форма, наличие жаберного дыхания, одного круга кровообращения. Приспособительными признаками головастиков являются их присоски, длинный кишечник. Для личиночных форм характерно также и то, что по сравнению со взрослыми формами, они оказываются приспособленными к жизни в совершенно иных условиях, занимая другую экологическую нишу и другое место в цепи питания. Например, личинки лягушек имеют жаберное дыхание, тогда как взрослые формы - легочное. В отличие от взрослых форм, которые являются плотоядными существами, личинки лягушек питаются растительной пищей.
Последовательность событий в развитии организмов часто называют жизненными циклами, которые могут быть простыми и сложными. Наиболее простые циклы развития характерны, например, для млекопитающих, когда из оплодотворенной яйцеклетки развивается организм, который снова продуцирует яйцеклетки и т. д. Сложными биологическими циклами являются циклы у животных, для которых характерно развитие с метаморфозами. Знания о биологических циклах имеют практическое значение, особенно в случаях, когда организмы являются возбудителями или переносчиками возбудителей болезней животных и растений.
Развитие и дифференциация, связанные с метаморфозами, являются результатом естественного отбора, благодаря которому многие личиночные формы, например, гусеницы насекомых и головастики лягушек адаптированы к среде лучше, чем взрослые половозрелые формы.
Пубертатный период . Этот период называют еще зрелым, и он связан с половой зрелостью организмов. Развитие организмов в этот период достигает максимума.
На рост и развитие в постэмбриональный период большое влияние оказывают факторы среды. Для растений решающими факторами являются свет, влажность, температура, количество и качество питательных веществ в почве. Для животных первостепенное значение имеет полноценное кормление (наличие в корме белков, углеводов, липидов, минеральных солей, витаминов, микроэлементов). Важны также кислород, температура, свет (синтез витамина Д).
Рост и индивидуальное развитие животных организмов подвержены нейрогуморальной регуляции со стороны гуморальных и нервных механизмов регуляции. У растений обнаружены гормоноподобные активные вещества, получившие название фитогормонов. Последние влияют на жизненно важные отправления растительных организмов.
В клетках животных в процессе жизнедеятельности синтезируются химически активные вещества, влияющие на процессы жизнедеятельности. Нервные клетки беспозвоночных и позвоночных вырабатывают вещества, получившие название нейросекретов. Железы эндокринной, или внутренней, секреции также выделяют вещества, которые получили название гормонов. Эндокринные железы, в частности, те, которые имеют отношение к росту и развитию, регулируются нейросекретами. У членистоногих регуляция роста и развития очень хорошо показана на примере влияния гормонов на линьку. Синтез личиночного секрета клетками регулируется гормонами, накапливающимися в мозге. В особой железе у ракообразных вырабатывается гормон, тормозящий линьку. Уровни этих гормонов определяют периодичность линек. У насекомых установлена гормональная регуляция созревания яиц, протекание диапаузы.
У позвоночных железами внутренней секреции являются гипофиз, эпифиз, щитовидная, паращитовидная, поджелудочная, надпочечники и половые железы, которые тесно связаны одна с другой Гипофиз у позвоночных вырабатывает гонадотропный гормон, стимулирующий деятельность половых желез. У человека гормон гипофиза влияет на рост. При недостатке развивается карликовость, при избытке - гигантизм. Эпифиз продуцирует гормон, который влияет на сезонные колебания в половой активности животных. Гормон щитовидной железы влияет на метаморфоз насекомых и земноводных. У млекопитающих недоразвитие щитовидной железы ведет к задержке роста, недоразвитию половых органов. У человека из-за дефекта щитовидной железы задерживается окостенение, рост (карликовость), не наступает полового созревания, останавливается психическое развитие (кретинизм). Надпочечники продуцируют гормоны, оказывающие влияние на метаболизм, рост и дифференцировку клеток. Половые железы продуцируют половые гормоны, которые определяют вторичные половые признаки. Удаление половых желез ведет к необратимым изменениям ряда признаков. Например, у кастрированных петухов прекращается рост гребня, теряется половой инстинкт. Кастрированный мужчина приобретает внешнее сходство с женщиной (не растет борода и волосы на коже, отлагается жир на груди и в области таза, сохраняется тембр голоса и т. д.).
продолжение
--PAGE_BREAK--

Сущность процессов воспроизведения и размножения

Воспроизведение - это способность организмов образовывать себе подобных. Воспроизведение является одним из важнейших свойств жизни и возможно благодаря общей способности организмов производить потомство. Однако не всегда непосредственные потомки подобны родительским особям. Например, из спор папоротника вырастает многочисленное потомство, представленное заростками, не похожими на материнское спороносное растение. На заростке, в свою очередь, возникает непохожее на него растение - спорофит. Такое явление получило название чередование поколений.

Если образование потомства сопровождается увеличением числа особей данного вида, то такой процесс представляет собой размножение. Размножение - это воспроизведение генетически сходных особей данного вида, которое характеризуется увеличением числа особей в дочернем поколении по сравнению с поколением родителей.

При размножении обеспечивается преемственность и непрерывность жизни. Преемственность заключается в том, что в процессе воспроизведения передается вся генетическая информация, заложенная в родительском поколении, дочернему поколению. Благодаря смене поколений определенные виды и их популяции могут существовать неограниченно долго, так как снижение их численности вследствие естественной гибели особей компенсируется за счет постоянного воспроизведения организмов и замещения умерших родившимися (непрерывность жизни).

Виды организмов, будучи представлены смертными особями, благодаря смене поколений не только сохраняют и передают потомкам основные черты своего строения и функционирования, но и изменяются. Наследственные изменения организмов в размножения наблюдается у некоторых водорослей и простейших (фораминифер, споровиков).

Спорообразование встречается у водорослей, простейших (споровики) и некоторых групп бактерий. Этот тип размножения связан с образованием спор. Спора представляет собой клетку, покрытую плотной оболочкой. Последняя надежно защищает внутреннее содержимое клетки от воздействия неблагоприятных условий. Бактериальные споры, например, оказываются очень устойчивыми к воздействию высоких температур. У споровиков споры являются особой стадией жизненного цикла, позволяющей «переживать» действия неблагоприятных факторов среды. Попав в благоприятные условия, спора прорастает и развивается в новый организм.

Бесполое размножение многоклеточных организмов. Вегетативное размножение - форма бесполого размножения у растений, при котором начало новому организму дают вегетативные органы - корень, стебель, лист, либо специализированные видоизмененные побеги - клубни, луковицы, корневища, выводковые почки и т. п.

В основе фрагментации, как и в случае вегетативного размножения, лежит способность организма восстанавливать недостающие органы и части тела (регенерация). При этом способе размножения новые особи возникают из фрагментов материнского организма. Фрагментацией могут размножаться, например, нитчатые водоросли, грибы, некоторые плоские (ресничные) и кольчатые черви.

Почкование характерно для губок, некоторых кишечнополостных (гидры) и оболочников (асцидии), у которых за счет размножения группы клеток на теле образуются выпячивания (почки). Почка увеличивается в размерах, затем у нее появляются зачатки всех структур и органов, характерных для материнского организма. Потом происходит отделение (отпочковывание) дочерней особи, которая растет и достигает размеров материнского организма. Если дочерние особи не отделяются от материнской, то формируются колонии (коралловые полипы).

У некоторых кишечнополостных встречается размножение стробиляцией. При этом полип интенсивно растет, а затем в верхней части делится поперечными перетяжками на дочерние особи (стробилы). В это время полип напоминает стопку тарелок. Образовавшиеся дочерние особи - медузы - отрываются от материнской и начинают самостоятельное существование.

Бесполое размножение одноклеточных организмов. Бактерии и простейшие (амебы, эвглены, инфузории и др.) размножаются делением клетки надвое. Бактерии делятся простым бинарным делением; простейшие - митозом. После деления дочерние клетки растут и, достигнув величины материнского организма, снова делятся.

В природе наблюдаются случаи, когда клетки делятся не на равные части. В этом случае меньшая клетка как бы отпочковывается от большой. Подобный тип деления (гетеротомия) встречается у дрожжей и некоторых бактерий, и его называют почкованием.

Множественное деление (шизогония) характеризуется тем, что при таком размножении наблюдается многократное деление ядра без деления цитоплазмы. Далее вокруг каждого из ядер обособляется небольшой участок цитоплазмы, и деление клетки завершается образованием множества дочерних особей. Такой тип ряду поколений приводят к изменению вида или к возникновению новых видов.

Обычно различают два основных типа размножения: бесполое и половое. Половое размножение связано с образованием половых клеток - гамет, их слиянием (оплодотворением), образованием зиготы и дальнейшим ее развитием. Бесполое размножение не связано с образованием гамет.

Бесполое размножение

Бесполое размножение

При бесполом размножении потомки развиваются из одной материнской клетки или группы клеток (части материнского организма). По наследуемым свойствам образующиеся потомки идентичны материнскому организму и называются клонами.

Выделяют несколько форм бесполого размножения:

У некоторых групп животных наблюдается вторичное возникновение бесполого размножения на основе полового процесса. Примером такого способа размножения является полиэмбрио-ния, при которой первые деления при дроблении зиготы сопровождаются разобщением бластомеров, из которых впоследствии развиваются самостоятельные организмы (от 2 до 8). Полиэмб-риония распространена у плоских червей (эхинококк) и в некоторых группах насекомых (наездники). Таким способом образуются однояйцевые близнецы у человека и других млекопитающих {например, у южноамериканских броненосцев).

Спорообразование (споруляция) присуще всем растениям и грибам. При этом способе размножения из определенных клеток материнского организма в результате их деления (митозом или мейозом) формируются споры, которые в дальнейшем (при прорастании) могут стать родоначальницами дочерних организмов.

Половое размножение

Половое размножение

Половой процесс. Половое размножение отличается наличием полового процесса, который обеспечивает обмен наследственной информацией и создает условия для возникновения наследственной изменчивости. В нем, как правило, участвуют две особи - женская и мужская, которые образуют гаплоидные женские и мужские половые клетки - гаметы. В результате оплодотворения, т. е. слияния женской и мужской гамет, образуется диплоидная зигота с новой комбинацией наследственных признаков, которая и становится родоначальницей нового организма.

Половое размножение по сравнению с бесполым обеспечивает появление наследственно более разнообразного потомства. Формами полового процесса являются конъюгация и копуляция.

Конъюгация - своеобразная форма полового процесса, при которой оплодотворение происходит путем взаимного обмена мигрирующими ядрами, перемещающимися из одной клетки в другую по цитоплазматическому мостику, образуемому двумя особями. При конъюгации обычно не происходит увеличения количества особей, но происходит обмен генетическим материалом между клетками, что обеспечивает перекомбинацию наследственных свойств. Конъюгация типична для ресничных простейших (например, инфузорий), некоторых водорослей (спирогиры).

Копуляция (гаметогамия) - форма полового процесса, при которой две различающиеся по полу клетки - гаметы - сливаются и образуют зиготу. При этом ядра гамет образуют одно ядро зиготы.

Различают следующие основные формы гаметогамии: изогамия, анизогамия и оогамия.

При изогамии образуются подвижные, морфологически одинаковые гаметы, однако физиологически они различаются на «мужскую» и «женскую». Изогамия встречается у многих водорослей.

При анизогамии (гетерогамии) формируются подвижные, различающиеся морфологически и физиологически гаметы. Такой тип полового процесса характерен для многих водорослей.

В случае оогамии гаметы сильно отличаются друг от друга. Женская гамета - крупная неподвижная яйцеклетка, содержащая большой запас питательных веществ. Мужские гаметы - сперматозоиды -- мелкие, чаще всего подвижные клетки, которые перемещаются с помощью одного или нескольких жгутиков. У семенных растений мужские гаметы - спермии - не имеют жгутиков и доставляются к яйцеклетке с помощью пыльцевой трубки. Оогамия характерна для животных, высших растений и многих грибов.

Гаметогенез. Процесс образования и развития гамет называется гаметогенезом. У многоклеточных водорослей, многих грибов и высших споровых растений формирование гамет происходит в специальных органах полового размножения - гаметангиях. У высших споровых растений женские гаметангии называются архегониями, мужские - антеридиями. У животных гаметогенез протекает в специальных половых железах -гонадах. Однако, например, у губок и кишечнополостных половые железы отсутствуют и гаметы возникают из различных соматических клеток.

Сперматозоиды и яйцеклетки обычно формируются соответственно особями мужского и женского пола. Биологические виды, у которых все организмы делятся в зависимости от производимых ими клеток на самцов и самок, называются раздельно- полыми. Встречаются виды, у которых один и тот же организм может образовывать как мужские, так и женские половые клетки. Такие организмы называются гермафродитами (в греческой мифологии гермафродит - дитя Гермеса и Афродиты - обоеполое существо, несущее в себе и женское, и мужское начало). Гермафродитизм наблюдаются у многих беспозвоночных животных (моллюсков, плоских и кольчатых червей), а также у круглоротых (миксины) и рыб (морской окунь). В этом случае организмы, как правило, имеют ряд приспособлений, препятствующих самооплодотворению. У некоторых моллюсков половая железа продуцирует попеременно мужские и женские половые клетки. Это зависит от условий существования особи и ее возраста.

У большинства низших животных гаметы вырабатываются в течение всей жизни, у высших - только в период половой активности, с момента полового созревания до затухания деятельности желез в старости.

Половые клетки в своем развитии претерпевают ряд сложных преобразований. Процесс формирования мужских половых клеток называется сперматогенез, женских - оогенез.

Сперматогенез и строение мужских гамет у высших животных. Сперматогенез происходит в мужских половых железах - семенниках. Семенник высших животных состоит из семенных канальцев. В каждом канальце можно обнаружить отдельные зоны, в которых клетки расположены концентрическими кругами. В каждой зоне клетки находятся на соответствующих стадиях развития. Сперматогенез складывается из четырех периодов: размножения, роста, созревания и формирования (рис. 2.1).

По периферии семенного канальца располагается зона размножения. Клетки этой зоны называются сперматогониями. Они усиленно делятся митозом, благодаря чему увеличивается их количество и сам семенник. Период интенсивного деления сперма-то гониев называется периодом размножения.

Рис 2.1. Сперматогенез в семенном канальце: а-срез через каналец; 6 - участок канальца при большем увеличении; I - спериатогонии; 2 - делящийся сперматацит первого порядка; 3 - сперматоцит второго порядка; 4 - делящийся сперматоцит второго порядка; 5 - сперматиды; 6 - сперматозоид.

После наступления половой зрелости некоторые сперматого-нии перемещаются в следующую зону - зону роста, расположенную ближе к просвету канальца. Здесь клетки увеличиваются в размерах за счет возрастания количества цитоплазмы и превращаются в сперматоциты первого порядка (период роста).

Третий период развития мужских гамет называется периодом созревания. В это время сперматоциты первого порядка делятся мейозом. После первого деления образуется два сперматоцита второго порядка, а после второго - четыре сперматиды, имеющие овальную форму и значительно меньшие размеры. Сперматиды перемещаются в зону, ближайшую к просвету канальца (зона формирования). Здесь сперматиды изменяют свою форму и превращаются в зрелые сперматозоиды, которые затем выносятся из семенников по семявыносящим путям.

В семенниках формируется огромное количество сперматозоидов. Так, при каждом половом акте у человека наружу выносится около 200 млн. сперматозоидов.

Форма мужских гамет у разных видов животных различна. Наиболее типичны для высших животных сперматозоиды, имеющие головку, шейку и длинный хвост, служащий для активного передвижения. Именно такое строение имеют сперматозоиды человека. Ширина их овальной головки 1,5-2 мкм, длина хвоста - около 60 мкм. Головка содержит ядро и незначительное количество цитоплазмы с органеллами. На переднем конце головки расположена акросома, представляющая собой видоизмененный аппарат Гольджи. В ней содержатся ферменты, растворяющие оболочку яйцеклетки при оплодотворении. В шейке находятся центриоли и митохондрия.

Сперматозоиды не имеют запасов питательных веществ и обычно быстро погибают. Однако у некоторых животных, например у пчел, они обладают большой жизнеспособностью и сохраняются живыми в течение нескольких лет, находясь в специальном органе самки - семяприемнике.

Оогенез н строение яйцеклеток у высших животных. Оогенез происходит в особых железах - яичниках -и включаеттри периода: размножение, рост и созревание. Период формирования здесь отсутствует.

В период размножения интенсивно делятся предшественники половых клеток - оогонии. У млекопитающих этот период заканчивается еще до рождения. К этому времени формируется около 30 тыс. оогониев, которые сохраняются долгие годы без изменения. С наступлением половой зрелости отдельные оогонии периодически вступают в период роста. Клетки увеличиваются, в них накапливается желток - образуются ооциты первого порядка. Каждый ооцит окружается мелкими фолликулярными клетками, обеспечивающими его питание. Затем образуется зрелый ооцит (Граафов пузырек), подходящий к поверхности яичника. Стенка его разрывается, и ооцит первого порядка попадает в брюшную полость и далее в маточную трубу. Ооциты первого порядка вступают в период созревания - они делятся, но в отличие от аналогичного процесса при сперматогенезе здесь образуются клетки, не равные по размерам: при первом делении созревания ооразу-ется один ооцит второго порядка и маленькое первое направительное тельце, при втором делении - зрелая яйцеклетка и второе направительное тельце. Такое неравномерное распределение цитоплазмы обеспечивает яйцеклетке получение значительного количества питательных веществ, которые затем используются при развитии зародыша (рис. 2.2).

Зрелая яйцеклетка, как и сперматозоид, содержит в себе половинное число хромосом, так как в период созревания ооциты первого порядка претерпевают мейоз. Яйцеклетки чаще всего имеют сферическую форму (рис. 2.3). Они обычно значительно крупнее соматических клеток. Яйцеклетка человека, например, имеет в диаметре 150-200 мкм. Особенно больших размеров достигают яйцеклетки животных, эмбриональное развитие которых происходит вне тела матери (яйца птиц, рептилий, амфибий и рыб).

Рис 2.2. Схема сперматогенеза (а) и оогенеза (б).

Рис 2.3. Строение яйцеклетки млекопитающего: I - цитоплазма; 2 - ядро; 3 - оболочка; 4 - фолликулярные клетки.

В яйцеклетках содержится ряд веществ, необходимых для формирования зародыша. В первую очередь это питательный материал - желток. В зависимости от количества желтка и характера его распределения различают несколько типов яйцеклеток.

Яйцеклетки покрыты оболочками. По происхождению оболочки делят на первичные, вторичные и третичные. Первичная оболочка яйцеклетки является производной цитоплазмы и называется желточной оболочкой. Ее наличие характерно для яйцеклеток всех животных. Вторичные оболочки образуются за счет деятельности клеток, питающих яйцеклетку. Вторичная оболочка характерна, например, для членистоногих (хитиновая оболочка). Третичные оболочки возникают в результате деятельности желез половых путей. К третичным относятся скорлуповая, подскорлу-повая и белковая оболочки яиц птиц и пресмыкающихся, студенистая оболочка яйцеклеток земноводных.

Оболочки выполняют защитные функции, обеспечивают обмен веществ с окружающей средой, а у плацентарных служат для внедрения зародыша в стенку матки.

Осеменение и оплодотворение. Процесс, обусловливающий встречу мужских и женских половых клеток у животных, называется осеменением. Различают наружное и внутреннее осеменение.

При наружном осеменении, характерном для большинства водных животных, сперматозоиды и яйцеклетки выделяются в воду, где и происходит их слияние. Для такого осеменения не обязательна непосредственная встреча мужских и женских особей, но необходимо большое количество гамет, так как большая часть их гибнет.

Внутреннее осеменение характерно для обитателей суши, где отсутствуют условия для сохранения и встречи гамет во внешней среде. При таком типе осеменения сперматозоиды вводятся в половые пути самки. У самцов для этого обычно имеются специальные совокупительные органы. Внутреннее осеменение характерно для всех наземных позвоночных (рептилий, птиц, млекопитающих), а также червей, пауков и насекомых.

При достижении сперматозоидами яйцеклеток происходит процесс оплодотворения. Осуществляется он следующим образом. При контакте с яйцеклеткой акросома сперматозоида разрывается и ее содержимое высвобождается. Под воздействием ферментов акросомы оболочка яйцеклетки в месте контакта растворяется. Внутренняя поверхность акросомы вытягивается, и формируется акро-сомальный отросток, который проникает через растворенную зону яйцевых оболочек и сливается с мембраной яйцеклетки. В этом месте из цитоплазмы образуется воспринимающий бугорок. Он захватывает ядро, центриоли и митохондрии сперматозоида и увлекает их внутрь яйцеклетки. Цитоплазматическая мембрана сперматозоида встраивается в мембрану яйцеклетки.

Проникновение сперматозоида в яйцеклетку вызывает отслаивание от яйцеклетки оболочки оплодотворения. Между ней и поверхностью яйцеклетки возникает пространство, заполненное жидкостью. Образование оболочки оплодотворения препятствует проникновению других сперматозоидов в яйцеклетку.

Проникшее в цитоплазму яйцеклетки ядро сперматозоида набухает, достигает величины ядра яйцеклетки. Ядра сближаются и сливаются. Этот момент и есть собственно оплодотворение. В результате из двух гамет образуется одна диплоидная зигота, т. е. восстанавливается диплоидный набор хромосом.

При оплодотворении в яйцеклетку обычно проникает один сперматозоид. Однако у насекомых, рыб, птиц и других животных в яйцеклетку может проникать несколько сперматозоидов. Это явление получило название полиспермии. При этом с ядром яйцеклетки сливается ядро только одного сперматозоида. Ядра других сперматозоидов разрушаются. Тем не менее для оплодотворения требуется участие многих сперматозоидов, так как они выделяют ферменты, обеспечивающие их проникновение в яйцеклетку. Если ферментов недостаточно, оплодотворение не наступает.

Партеногенез

Партеногенез

Особую форму полового размножения представляет собой партеногенез, или девственное размножение, - развитие организма из неоплодотворенной яйцеклетки. Данная форма размножения характерна главным образом для видов, обладающих коротким жизненным циклом с выраженными сезонными изменениями.

Партеногенез бывает гаплоидным и диплоидным.

У тлей, дафний, коловраток, некоторых ящериц наблюдается диплоидный (соматический) партеногенез, при котором ооци-ты самки формируют диплоидные яйцеклетки. Например, у дафний самки диплоидны, а самцы гаплоидны. В благоприятных условиях у дафний не происходит мейоза: диплоидные яйцеклетки развиваются без оплодотворения и дают начало самкам. У скальных ящериц перед мейозом происходит митотическое увеличение числа хромосом в клетках половых желез. Далее клетки проходят нормальный цикл мейоза, и в результате образуются диплоидные яйцеклетки, которые без оплодотворения дают начало новому поколению, состоящему только из самок. Это позволяет поддерживать численность особей в условиях, когда затруднена встреча особей разного пола.

Установлено существование естественного партеногенеза у птиц. У одной из пород индеек яйца часто развиваются партено- генетически, причем из них появляются только самцы.

Партеногенез можно вызвать искусственно. Советский Учёный Б. Л. Астауров опытным путем (раздражая разными способами поверхность яиц тутового шелкопряда: механически поглаживая кисточкой или делая уколы иглой, химически помещая яйца в различные кислоты, термически - нагревая яйца) добился эффекта дробления яиц без оплодотворения. В дальнейшем американец Грегори Пинкус из неоплодотворен ных яиц партеногенетически получил взрослых лягушек и кроликов-

В природе естественный партеногнез встречается у ряда растений (одуванчик, ястребинка и др.) и носит название апомиксис Под апомиксисом обычно понимают либо развитие из неопло-дотворенной яйцеклетки, либо возникновение зародыша вообще не из гамет (например, у цветковых растений зародыш может развиваться из различных клеток зародышевого мешка)-

Индивидуальное развитие организмов

Индивидуальное развитие организма, или онтогенез, - этосовокупность последовательных морфологических, физиологических и биохимических преобразований, претерпеваемых организмом от момента его зарождения до смерти. В онтогенезе происходит реализация наследственной информации, полученной организмом от родителей.

В онтогенезе выделяют два основных периода - эмбриональный и постэмбриональный. В эмбриональном у животных формируется эмбрион, у которого закладываются основные системы органов. В постэмбриональном периоде завершаются формообразовательные процессы, происходит половое созревание, размножение, старение и смерть.

Эмбриональный период начинается с образования зиготы и заканчивается рождением или выходом из яйцевых или зародышевых оболочек молодой особи. Он состоит из трех стадий: дробления, гаструляции и органогенеза.

Начальный этап развития оплодотворенного яйца носит название дробления. Через несколько минут или несколько часов (у разных видов по-разному) после внедрения сперматозоида в яйцеклетку образовавшаяся зигота начинает делиться митозом на клетки, называемые бластомерами. Этот процесс получил название дробления, так как в ходе его число бластомеров увеличивается в геометрической прогрессии, но они не вырастают до размеров исходной клетки, а с каждым делением становятся мельче. Бластомеры, образующиеся при дроблении, представляют собой ранние зародышевые клетки. Во время дробления митозы следуют один за другим, и к концу периода весь зародыш ненамного крупнее зиготы.

Тип дробления яйца зависит от количества желтка и характера его распределения. Различают полное и неполное дробление. В бедных желтком яйцах наблюдается равномерное дробление. Полному дроблению подвергаются зиготы ланцетника и млекопитающих, так как они содержат мало желтка и он распределен относительно равномерно.

В яйцах, богатых желтком, дробление может быть полным (равномерным и неравномерным) и неполным. Бластомеры одного полюса из-за обилия желтка всегда отстают в темпе дробления от бластомеров другого полюса. Полное, но неравномерное дробление характерно для амфибий. У рыб и птиц дробится лишь часть яйца расположенная на одном из полюсов; происходит неполное. дробление. Часть желтка остается вне бластомеров, которые располагаются на желтке в виде диска.

Рассмотрим более подробно дробление зиготы ланцетника. Дробление охватывает всю зиготу. Борозды первого и второго дробления проходят через полюса зиготы во взаимно перпендикулярных направлениях, в результате чего образуется зародыш, состоящий из четырех бластомеров (рис. 2.4).

Последующие дробления проходят попеременно в продольном и поперечном направлениях. На стадии 32 бластомеров зародыш напоминает ягоду шелковицы или малины. Он называется мору-лой. При дальнейшем дроблении (примерно на стадии 128 бластомеров) зародыш расширяется и клетки, располагаясь однослойно, образуют полый шар. Эта стадия называется бластулой. Стенка однослойного зародыша называется бластодермой, а находящаяся внутри полость - бластоцелью (первичной полостью тела).

Рис. 2.4. Начальные стадии развития ланцетника: а - дробление (стадия двух, четырех, восьми, шестнадцати бластомеров); б - бластула; в - гастру.чяция; г - схематический поперечный разрез через зародыш ланцетника; ! - эктодерма; 2 - вегетативный полюс бластулы; 3 - энтодерма; 4 - бластогель; 5 - рот гаструлы (бластопор); 6,7 - спинная и брюшная губы бластопора; 8 - образование нервной трубки; 9 - образование хорды; 10 - образование мезодермы.

Следующий этап эмбрионального развития - образование двуслойного зародыша -гаструляция. После того как бластула ланцетника полностью сформировалась, дальнейшее дробление клеток особенно интенсивно происходит на одном из полюсов. Вследствие этого они как бы втягиваются (впячиваются) внутрь. В результате образуется двуслойный зародыш. На этой стадии зародыш похож на чашу и называется гаструлой. Наружный слой клеток гаструлы называется эктодермой или наружным зародышевым листком, а внутренний слой, выстилающий полость гаструлы - гастральную полость (полость первичного кишечника), носит название энтодермы или внутреннего зародышевого листка. Полость гаструлы, или первичный кишечник, превращается у большинства животных на дальнейших этапах развития в пищеварительный тракт, открывается наружу первичным ртом, или бла-стопором. У червей, моллюсков и членистоногих бластонор превращается в рот взрослого организма. Поэтому их называют пер-вичноротыми. У иглокожих и хордовых рот прорывается на противоположной стороне, а бластонор превращается в заднепроходное отверстие. Их называют вторичноротыми.

На стадии двух зародышевых листков заканчивается развитие губок и кишечнополостных. У всех остальных животных образуется третий - средний зародышевый листок, расположенный между эктодермой и энтодермой. Он называется мезодермой.

После гаструляции начинается следующий этап в развитии зародыша - дифференцировка зародышевых листков и закладка органов (органогенез). Вначале происходит формирование осевых органов - нервной системы, хорды и пищеварительной трубки. Стадия, на которой осуществляется закладка осевых органов, называется неирулой.

Нервная система у позвоночных формируется из эктодермы в виде нервной трубки. У хордовых первоначально она имеет вид нервной пластинки. Эта пластинка растет интенсивнее всех остальных участков эктодермы и затем прогибается, образуя желобок. Края желобка смыкаются, возникает нервная трубка, которая тянется от переднего конца к заднему. На переднем конце трубки затем формируется головной мозг. Одновременно с образованием нервной трубки происходит формирование хорды. Хордаль-ный материал энтодермы выгибается, так что хорда выделяется из общей пластинки и превращается в обособленный тяж в виде сплошного цилиндра (см. рис. 2.4). Нервная трубка, кишечник и хорда образуют комплекс осевых органов зародыша, который определяет двустороннюю симметрию тела. Впоследствии хорда у позвоночных животных замещается позвоночником, и только у некоторых низших позвоночных ее остатки сохраняются между позвонками даже во взрослом состоянии.

Одновременно с образованием хорды происходит обособление третьего зародышевого листка - мезодермы. Способов образования мезодермы несколько. У ланцетника, например, мезодерма, как и все основные органы, образуется вследствие усиленного деления клеток с двух сторон первичной кишки. В результате образуются два энтодермальных кармана (см. рис. 2.4). Эти карманы увеличиваются, заполняя собой первичную полость тела, края их отрываются от энтодермы и смыкаются между собой, образуя две трубки, состоящие из отдельных сегментов, или сомитов. Это и есть третий зародышевый листок - мезодерма. В середине трубок находится вторичная полость тела, или целом.

Дальнейшая дифференцировка клеток каждого зародышевого листка приводит к образованию тканей (гистогенез) и формированию органов (органогенез). Кроме нервной системы из эктодермы развивается наружный покров кожи - эпидермис, и его производные (ногти, волосы, сальные и потовые железы), эпителий рта, носа, анального отверстия, выстилка прямой кишки, эмаль зубов, воспринимающие клетки органов слуха, обоняния, зрения и т. д.

Из энтодермы развиваются эпителиальные ткани, выстилающие пищевод, желудок, кишечник, дыхательные пути, легкие или жабры, печень, поджелудочную железу, эпителий желчного и мочевого пузыря, мочеиспускательного канала, щитовидную и околощитовидную железы.

Производными мезодермы являются соединительнотканная основа кожи (дерма), вся собственно соединительная ткань, кости скелета, хрящи, кровеносная и лимфатическая системы, дентин зубов, брыжейка, почки, половые железы, мускулатура.

Зародыш животных развивается как единый организм, в котором все клетки, ткани и органы находятся в тесном взаимодействии. При этом один зачаток оказывает влияние на другой, в значительной мере определяя путь его развития. Кроме того, на темпы роста и развития зародыша оказывают влияние внешние и внутренние условия.

Эмбриональное развитие организмов протекает по-разному у разных типов животных, но во всех случаях необходимая связь зародыша со средой обеспечивается специальными внезароды-шевыми органами, функционирующими временно и называемыми провизорными. Примерами таких временных органов являются желточный мешок у личинок рыб, плацента у млекопитающих.

Развитие зародышей высших позвоночных животных, в том числе и человека, на ранних стадиях развития весьма похоже на развитие ланцетника, но у них, уже начиная со стадии бластулы, наблюдается появление специальных зародышевых органов - дополнительных зародышевых оболочек (хориона, амниона и ал-лантоиса), обеспечивающих защиту развивающегося зародыша от высыхания и различного рода воздействий среды.

Наружная часть сферического образования, развивающегося вокруг бластулы, называется хорионом (рис. 2.5). Эта оболочка покрыта ворсинками. У плацентарных млекопитающих хорион вместе со слизистой оболочкой матки образует детское место, или плаценту, обеспечивающую связь плода с материнским организмом.

Рис. 2.5. Схема зародышевых оболочек: 1 - зародыш; 2 - амнион и его полость (3), заполненная амниотической жидкостью; 4 - хорион с ворсинками, образующими детское место (5); 6 - пупочный или желточный пузырь; 7 - аллантоис; 8 - пуповина.

Второй зародышевой оболочкой является амнион (лат. amnion - околозародышевый пузырь). Так в древности называли чашу, в которую сливали кровь животных, приносимых в жертву богам. Амнион зародыша заполнен жидкостью. Амниотичес-кая жидкость - водный раствор белков, Сахаров, минеральных солей, содержащий также гормоны. Количество этой жидкости у шестимесячного зародыша человека достигает 2 л, а к моменту родов - 1 л. Стенка амниотической оболочки - производное экто- и мезодермы.

Аллантоис (лат. alios - колбаса, oidos - вид) - третья зародышевая оболочка. Это зачаток мочевого мешка. Появляясь в виде небольшого мешковидного выроста на брюшной стенке задней кишки, он выходит через пупочное отверстие и очень быстро разрастается и охватывает амнион и желточный мешок. У различных позвоночных животных его функции различны. У пресмыкающихся и птиц в нем накапливаются продукты жизнедеятельности зародыша до вылупливания из яйца. У зародыша человека он не достигает больших размеров и исчезает на третьем месяце эмбрионального развития.

Органогенез завершается в основном к концу эмбрионального периода развития. Однако дифференцировка и усложнение органов продолжается и в постэмбриональном периоде.

После рождения или выхода из яйцевых оболочек наступает постэмбриональный, или послезародышевый, период онтогенеза, который может происходить двумя различными путями. Различают прямое и непрямое развитие. При прямом развитии рождающийся организм имеет все органы, свойственные взрослому животному. Прямое (неличиночное) развитие характерно для рыб, пресмыкающихся и птиц, а также беспозвоночных, яйца которых богаты желтком, т. е. питательным материалом, достаточным для завершения онтогенеза. Прямое развитие осуществляется у высших млекопитающих (внутриутробный тип развития) и происходит не за счет питательных веществ яйцеклетки, а благодаря поступлению их из материнского организма. В связи с этим из тканей матери и зародыша образуются сложные провизорные органы, в первую очередь плацента.

Многим видам животных присуще непрямое развитие (развитие с превращением - метаморфозом). В этом случае эмбриональное развитие приводит к образованию личинки, которая значительно отличается по внешнему и внутреннему строению от взрослого организма, а затем куколки. Куколка, как правило, неподвижна, она не питается. Из нее развивается полностью сформировавшееся взрослое насекомое. В этом случае говорят о полном превращении (бабочки, мухи, комары, стрекозы). У насекомых с неполным превращением происходит постепенное изменение личинки, сходной со взрослым организмом, сопровождающееся линьками и увеличением размеров; стадия куколки отсутствует (кузнечик, саранча, клопы, вши, стрекозы).

В подтипе позвоночных животных развитие с метаморфозом свойственно рыбам и амфибиям. Например, у лягушки из икринки развивается личинка (головастик), которая по строению, образу жизни и среде обитания резко отличается от взрослых животных. Так, у головастика имеются жабры, орган боковой линии, хвост, двухкамерное сердце, один, как у рыб, круг кровообращения. По достижении личинкой определенного уровня развития происходит ее метаморфоз, в процессе которого вырабатываются признаки взрослого организма. Так головастик превращается в лягушку. Наличие личиночной стадии в развитии земноводных обеспечивает им возможность жить в разной среде я использовать разные источники пищи: головастик живет в воде и питается растительной пищей, а лягушка ведет в основном наземный образ жизни и питается животной пищей. Такое явление наблюдается у многих насекомых. Смена среды обитания и, как следствие,

Индивидуальное развитие живых организмов завершается старением и смертью.

Размножение и индивидуальное развитие организмов

Введение

Размножение, или способность к самовоспроизведению, — одно из основных свойств всех живых организмов — от бактерий до млекопитающих и цветковых растений. Благодаря нему обеспечивается существование каждого вида, поддерживается преемственность между родительскими особями и их потомством. Формы размножения организмов разнообразны и будут рассмотрены ниже.

В основе всех форм размножения лежит деление клетки, протекающее довольно сходно у растений и животных. Поскольку сложные процессы, связанные с половым размножением, возникли на основе деления клетки, мы прежде всего рассмотрим процесс, приводящий к образованию из одной клетки двух.

  1. Митотическое деление клетки

Интерфаза и различные способы деления клеток. Различают два способа деления: I) наиболее распространенное, полноценное деление — митоз (непрямое деление) и 2) амитоз (прямое деление). Во время митотического деления происходит перестройка цитоплазмы, разрушение оболочки ядра, выявление хромосом. В жизни клетки выделяют период самого митоза и промежуток между делениями, который называют интерфазой. Однако период интерфазы (неделящейся клетки) по своей сущности может быть различным. В одних случаях во время интерфазы клетка функционирует и одновременно готовится к следующему делению. В других случаях клетки переходят в интерфазу, функционируют, но уже не готовятся к делению. В составе сложного многоклеточного организма имеются многочисленные группы клеток, утратившие способность делиться. К числу их относятся, например, нервные клетки. Подготовка клетки к митозу происходит в интерфазе. Для того чтобы представить себе основные черты этого процесса, вспомните строение клеточного ядра.

Основной структурной единицей ядра являются хромосомы, состоящие из ДНК и белка. В ядрах живых неделящихся клеток, как правило, отдельные хромосомы неразличимы, но большая часть хроматина, которую на окрашенных препаратах обнаруживают в форме тонких нитей или зерен различной величины, и соответствует хромосомам. У некоторых клеток отдельные хромосомы отчетливо видны и в интерфазном ядре, например в быстро делящихся клетках развивающегося оплодотворенного яйца и ядрах некоторых простейших. В различные периоды жизни клетки хромосомы претерпевают циклические изменения, которые прослеживаются от одного деления до другого.

Хромосомы во время митоза представляют собой удлиненные плотные тельца, по длине которых можно различать две нити — хроматиды, содержащие ДНК, представляющие собой результат удвоения хромосом. На каждой хромосоме выделяется первичная перетяжка, или центромера. Эта суженная часть хромосомы может быть расположена или посередине, или ближе к одному из концов, но для каждой определенной хромосомы ее место строго постоянно. Во время митоза хромосомы и хроматиды представляют собой туго свернутые спиральные нити (спирализованное, или конденсированное, состояние). В интерфазном ядре хромосомы сильно вытянуты, т. е. деспирализованы, благодаря чему становятся трудноразличимыми. Следовательно, цикл изменения хромосом состоит в спирализации, когда они укорачиваются, утолщаются и становятся хорошо различимыми, и деспирализации, когда они сильно вытягиваются, переплетаются, и тогда уже различить каждую в отдельности становится невозможно. Спирализация и деспирализация связаны с деятельностью ДНК, так как она функционирует только в деспирализованном состоянии. Выдача же информации, образование РНК на ДНК в спирализованном состоянии, т. е. во время митоза, прекращается.

Тот факт, что хромосомы присутствуют в ядре неделящейся клетки, доказывается также постоянством количества ДНК, числа хромосом и сохранением от деления до деления их индивидуальности.

Подготовка клетки к митозу. В течение интерфазы происходит ряд процессов, которые обеспечивают митоз. Назовем главнейшие из них: 1) удваиваются центриоли, 2) удваиваются хромосомы, т.е. количество ДНК и хромосомальных белков, 3) синтезируются белки, из которых строится ахроматиновое веретено, 4) накапливается энергия в виде АТФ, которая расходуется во время деления, 5) заканчивается рост клетки.

Первостепенное значение в подготовке клетки к митозу имеет синтез ДНК и удвоение хромосом.

Удвоение хромосом связано, прежде всего, с синтезом ДНК и одновременно происходящим синтезом белков хромосом. Процесс удвоения продолжается 6—10 часов и занимает среднюю часть интерфазы. Удвоение хромосом протекает так, что каждая старая одиночная цепь ДНК строит себе вторую. Этот процесс строго упорядочен и, начинаясь в нескольких точках, распространяется вдоль всей хромосомы.

Митоз. Фазы митоза

Митоз представляет собой универсальный способ деления клеток растений и животных, основная сущность которого состоит в точном распределении удвоенных хромосом между обеими образующимися дочерними клетками. Подготовка клетки к делению занимает, как мы видим, значительную часть интерфазы, и митоз начинается только тогда, когда подготовка в ядре и цитоплазме полностью заканчивается. Весь процесс подразделяют на четыре фазы. Во время первой из них — профазы — центриоли делятся и начинают расходиться в противоположные стороны. Вокруг них из цитоплазмы образуются ахроматиновые нити, которые вместе с центриолями образуют ахроматиновое веретено. Когда закончится расхождение центриолей, вся клетка оказывается полярной, обе центриоли располагаются у противоположных полюсов, а средняя плоскость может быть названа экватором. Нити ахроматинового веретена сходятся у центриолей и широко располагаются на экваторе, по форме напоминают веретено. Одновременно с образованием в цитоплазме веретена ядро начинает разбухать, и в нем четко выделяется клубок утолщенных нитей — хромосом. На протяжении профазы происходит спирализация хромосом, которые при этом укорачиваются и утолщаются. Профаза заканчивается растворением ядерной оболочки, а хромосомы оказываются лежащими в цитоплазме. В это время видно, что все хромосомы уже двойные.

Затем наступает вторая фаза — метафаза. Хромосомы, расположенные сначала беспорядочно, начинают передвигаться к экватору. Все они обычно располагаются в одной плоскости на равном расстоянии от центриолей. В это время к хромосомам прикрепляется часть нитей веретена, другая же часть их по-прежнему тянется непрерывно от одной центриоли до другой — это опорные нити. Тянущие, или хромосомальные, нити прикрепляются к центромерам (первичным перетяжкам хромосом), но при этом нужно помнить, что как хромосомы, так и центромеры уже двойные. Тянущие нити от полюсов прикрепляются к тем хромосомам, которые к ним ближе. Наступает короткая пауза. Это центральная часть митоза, после которой начинается третья фаза — анафаза.

Во время анафазы тянущие нити веретена начинают сокращаться, растягивая хромосомы к разным полюсам. При этом хромосомы ведут себя пассивно, они, изгибаясь наподобие шпильки, двигаются вперед центромерами, за которые их тянет нить веретена. В начале анафазы снижается вязкость цитоплазмы, что способствует быстрому движению хромосом.

Следовательно, нити веретена обеспечивают точное расхождение хромосом (удвоившихся еще в интерфазе) к разным полюсам клетки.

Завершается митоз последней стадией — телофазой. Хромосомы, приближаясь к полюсам, тесно переплетаются друг с другом. Одновременно начинается их вытягивание (деспирализация), и различить отдельные хромосомы становится невозможным. Постепенно из цитоплазмы образуется ядерная оболочка, ядро разбухает, появляется ядрышко, и восстанавливается прежнее строение интерфазного ядра.

В конце анафазы или в начале телофазы начинается деление цитоплазмы. У клеток животных снаружи в виде кольца появляется перетяжка, которая, углубляясь, разделяет клетку на две меньших размеров. У растений цитоплазматическая оболочка возникает в середине клетки и распространяется к периферии, разделяя клетку пополам. Уже после образования плазматической оболочки у растительных клеток возникает целлюлозная оболочка. Следовательно, в делении клетки активное участие принимает и ядро, и цитоплазма. Ядро содержит уникальные структуры клетки — хромосомы, а ахроматиновое веретено, формирующееся из цитоплазмы, осуществляет их правильное и равное распределение между обеими дочерними клетками.

Продолжительность митоза и интерфазы

Митоз — относительно короткий период в жизни клетки, гораздо дольше длится интерфаза, что видно из таблицы.

В быстро размножающихся клетках митоз может длиться всего несколько минут. Следовательно, продолжительность митоза варьирует от нескольких минут до 2—3 ч. Интерфаза же длится от 8—10 ч. до нескольких суток.

Скорость, с которой протекают отдельные фазы митоза, также различна:

  1. Постоянство количества и индивидуальность хромосом

Хромосомы состоят из ДНК и белка, т. е. по своему химическому составу они все сходны, но различаются по форме и размерам, месту положения первичной перетяжки, наличию вторичных перетяжек. Изучение хромосом многих растений и животных показало, что они обладают определенной индивидуальностью. Кроме того, было обнаружено, что все хромосомы (за исключением так называемых половых) образуют гомологичные пары. Парный набор характерен для соматических клеток (неполовых) и носит название диплоидного. Шесть хромосом растения скерды, относящегося к семейству сложноцветных. Эти шесть хромосом образуют три различающиеся между собой пары. Однако не всегда хромосомы хорошо различимы, 3 пары хромосом комара по внешним признакам трудноразличимы. Количество хромосом и их индивидуальность сохраняются во всех клетках и являются характерными признаками для каждого вида. На таблице приведены данные о количестве хромосом у некоторых видов растений и животных:

Диплоидное число хромосом

Диплоидное число хромосом

Домашняя муха

Плодовая дрозифила

Шимпанзе

Амитоз. Амитоз представляет собой деление ядра в интерфазном состоянии без предшествующей спирализации хромосом и перестройки ядра. Например, в некоторых клетках соединительной ткани ядро вытягивается, посередине появляется перетяжка, которая углубляется, и в клетке оказывается два ядра. Затем такая же перетяжка начинает делить цитоплазму, и получается две клетки. Во многих случаях делится только ядро, и в результате клетка становится дву- или многоядерной (если таких делений было несколько). Иногда ядро при амитозе делится на две неравные части: одну — большую, а другую — меньшую. По-видимому, при амитозе ДНК распределяется неравномерно между дочерними ядрами.

Амитоз наблюдается часто при патологических состояниях или при действии неблагоприятных факторов на клетку, например, после действия пониженной температуры или рентгеновских лучей, т. е. таких воздействий, которые нарушают митоз. После перешнуровки ядер в процессе амитоза в большинстве случаев цитоплазма не делится, а само наличие перешнуровки ядра, как правило, указывает на необратимые изменения в клетке, которые рано или поздно приведут ее к гибели.

Митоз — это первичный способ деления клетки, наиболее распространенный и физиологически полноценный. Амитоз следует рассматривать как его видоизменение, т. е. явление вторичное. Амитоз встречается относительно редко и является неполноценным способом деления ядра и клетки.

  1. Продолжительность жизни, старение и смерть клеток

Рост и развитие многоклеточных организмов связаны с увеличением массы, которое осуществляется путем деления клеток. Например, развитие крысы, начавшееся с одной клетки. На 12—13-е сутки развития эмбрион содержит 50 млн. клеток. К моменту рождения крысенок состоит уже из 6 млрд., а крыса трехмесячного возраста — примерно из 67 млрд. клеток.

У млекопитающих и многих других животных, кроме роста, связанного с увеличением количества клеток, происходит постоянное отмирание и замещение одних клеток другими путем их деления. Например, ороговевшие клетки кожного эпителия все время слущиваются и заменяются новыми. То же самое происходит и с клетками крови. Так, подсчитано, что у взрослого человека среднего веса в одну секунду отмирает около 2 млрд. красных кровяных клеток — эритроцитов и заменяется новыми, поступающими из костного мозга, где их убыль все время пополняется путем деления. Поэтому продолжительность жизни размножающихся клеток определяется длительностью интерфазы, т. е. временем, которое длится от одного деления до другого. Но различают и другой отрезок времени жизни клетки — от последнего деления до ее смерти, т. е. период, когда клетка живет и функционирует, но уже не делится. Так, нервные клетки у млекопитающих перестают размножаться к моменту рождения или вскоре после рождения, продолжительность их жизни в среднем равна продолжительности жизни организма. В других тканях функция связана с постоянным отмиранием и обновлением клеток; например, эритроциты, попадая в кровяное русло, живут и функционируют там, около 120 суток, а затем отмирают. Подобное же происходит и с лейкоцитами, которые живут и функционируют всего несколько дней. К тканям, функция которых связана с обновлением клеток, относятся и различные эпителии. Приведенные примеры показывают, что митотическое деление клеток во взрослом организме связано с нормально протекающим обновлением клеток, т. е. физиологической регенерацией. Деление клеток также обеспечивает восстановление тканей при регенерации после порезов, ожогов или каких-либо иных повреждений. Естественно, что во время роста организма количество размножающихся клеток больше, чем отмирающих, что и обеспечивает общее увеличение массы клеток.

Старение и смерть клеток

Старение и отмирание клеток непосредственно может быть, и не связано со старением и смертью организма. В эритроцитах утрата, ядра, делающая невозможным синтез белка, предопределяет неизбежную гибель клетки, которая зависит от старения собственных белков. При ороговении клеток кожного эпителия в цитоплазме происходит накопление особого белка, который и приводит клетки к гибели. Во всех случаях начало старения связано с прекращением деления и накоплением в цитоплазме специфических белков, что и приводит клетки к смерти. Иначе обстоит дело с долго живущими клетками, например нервными. При старении нарушается обмен веществ, в цитоплазме накапливаются пигментные зерна, иногда капли жира. В этих случаях отмирание массы клеток оказывается связанным со старением и смертью организма. Из приведенных примеров можно видеть, что признаки старения выявляются, как правило, в цитоплазме. При помещении клеток в искусственную питательную среду (культура ткани) они могут размножаться бесконечно. Для этого необходимо постоянно менять питательную среду и удалять избыток клеток. Например, культура из тканей цыпленка существовала около 50 лет. Ряд других тканевых культур поддерживается десятки лет.

Можно думать, что ядро не имеет отношения к старению клеток. Однако это не так. Возникающие после аномальных митозов клетки могут содержать неполный набор хромосом, что обязательно приведет клетку как в организме, так и в культуре тканей к гибели. Следовательно, признаки старения может нести: 1) ядро и его генетический аппарат, 2) вся клетка в целом или же 3) только цитоплазма.

  1. Формы размножения организмов

Как указывалось выше, различают несколько форм размножения организмов, из которых рассмотрим основные: 1) половое размножение, 2) бесполое и 3) вегетативное размножение.

Бесполое и вегетативное размножение. Бесполое размножение широко распространено в природе у животных и растений. Например, деление инфузорий такое же, как и деление других одноклеточных организмов. Среди растений бесполое размножение свойственно споровым: водорослям, грибам, мхам и папоротникам. Во всех случаях бесполого размножения растения оно осуществляется за счет спор. Следовательно, бесполым размножением называют размножение при помощи одной клетки, которая не несет признаков, характерных для половых клеток. При вегетативном размножении от материнского организма отделяется группа соматических клеток, из которых и развивается дочерний организм. Типичным примером может служить размножение пресноводной гидры. На теле ее сбоку появляется небольшое утолщение, которое далее превращается в вырост (почку). Этот вырост состоит из клеток энтодермы и эктодермы. Постепенно вырост удлиняется, на переднем конце образуется рот, вокруг которого появляются щупальцы. Весь процесс заканчивается образованием маленькой дочерней гидры.

Особенно широко распространено вегетативное размножение у растений. Так, отдельные ветви ивы, укореняясь, развиваются в новое растение. Размножение черенками широко распространено и используется при размножении ряда растений. Другим примером может служить вегетативное размножение земляники. Надземные части стебля, разрастаясь и сильно вытягиваясь, образуют так называемые усы. Попадая в почву, концы усов укореняются, и из них образуется новое растение.

Половое размножение. В отличие от вегетативного размножения, как у растений, так и у животных половое размножение происходит всегда за счет специализированных половых клеток — яйцеклеток и сперматозоидов, образующихся в половых железах. Половые клетки содержат гаплоидное (половинное) число хромосом, а значит, и половинное количество ДНК- В таком гаплоидном наборе из каждой пары хромосом, имевшихся в соматических клетках, присутствует только одна хромосома. Яйцеклетки различных животных обычно крупные, неподвижные. Размеры их сильно варьируют. Например, среди млекопитающих у кролика диаметр яйцеклетки 0,2 мм. Размер яйцеклетки определяется содержанием в цитоплазме запасного питательного вещества — желтка. В крупных яйцеклетках содержится большое количество желтка, чему ярким примером может служить огромная яйцеклетка птицы. Яйцеклетка птицы — это та часть яйца, которую в общежитии обычно называют желтком (диаметр его около 3 см). На одной стороне желтка расположено белое пятнышко, представляющее активную цитоплазму с ядром. Именно из этого небольшого участка и развивается зародыш, а вся остальная масса содержит запасные питательные вещества, обеспечивающие развитие цыпленка в яйце. Такая яйцеклетка окружена оболочками — белком и скорлупой, являющимися дополнительными образованиями. Эти оболочки обеспечивают развитие зародыша в воздушной среде. Более мелки яйцеклетки у рыб и амфибий. Это икринки диаметром в несколько миллиметров. Они содержат в цитоплазме довольно много желтка, но значительно меньше, чем у птиц. Мелкие яйцеклетки содержат очень мало желтка, и он равномерно распределяется по всей яйцеклетке. Собственная оболочка яйцеклетки, образуемая поверхностью цитоплазмы, называется желточной оболочкой. Кроме нее, возникает более или менее развитая белковая оболочка, которая выделяется клетками яйцеводов. Либо в центре яйцеклетки, либо у края располагается одно относительно крупное ядро.

Сперматозоид всегда во много раз меньше яйцеклетки. Типичную для многих животных форму имеют сперматозоиды млекопитающих, которые состоят из трех отделов: головки, шейки и хвостика. В головке располагается ядро, кроме него, на переднем конце содержится небольшой участок уплотненной цитоплазмы, при помощи которого сперматозоид проникает в яйцеклетку. Шейка — суженная часть позади головки — содержит центриоль и переходит в тонкую удлиненную цитоплазматическую нить — хвостик. Хвостик сходен со жгутиком жгутиконосца или ресничкой инфузории. Благодаря его движению сперматозоиды активно передвигаются.

Развитие половых клеток

Как семенник, в котором образуются сперматозоиды, так и яичник, в котором формируются яйцеклетки, можно представить в виде трубки, внутри которой и протекает весь процесс образования половых клеток. В самом начале трубки находятся первичные половые клетки, которые делятся обычным митозом, благодаря чему количество их все время возрастает. Этот участок половой железы и называется зоной размножения. Переходя в следующую зону, клетки начинают расти, образуя зону роста. Процесс роста более резко выражен во время образования женских половых клеток — овогенеза («овум» — яйцо, «генезис» — развитие, лат.). Менее выражен период роста при образовании мужских половых клеток — сперматогенезе.

Во время роста, кроме увеличения массы цитоплазмы, происходит также увеличение размеров ядра. Выросшие клетки (при сперматогенезе) называются сперматоцитами 1-го порядка, они вступают в период созревания и переходят в зону созревания.

Во время этого процесса сперматоциты делятся два раза, т. е. из одного сперматоцита образуется четыре клетки. Каждая из них далее превращается в сперматозоид.

При овогенезе период роста обычно длится дольше, чем при сперматогенезе, перешедшая в зону роста клетка называется овоцитом 1-го порядка. За время роста она увеличивается в сотни, а иногда и тысячи раз за счет накопления запасных питательных веществ. Например, из овоцита диаметром 20—30 мкм в результате роста образуется яйцеклетка лягушки диаметром 3—4 мм.

Выросшие овоциты приступают к созреванию, которое состоит из двух делений (так же как при сперматогенезе), но внешне эти деления протекают иначе. При делении овоцит 1-го порядка отделяет маленькую клетку (направительное тельце), и остается крупная клетка. Затем проходит второе деление, при котором выделяется следующее направительное тельце и образуется крупная, уже зрелая яйцеклетка. Пока происходит второе деление, первое направительное тельце успевает разделиться, и всего из овоцита образуются четыре клетки: три мелкие и одна крупная — яйцеклетка, которая сохраняет весь накопленный во время роста желток, необходимый для развития зародыша.

Созревание половых клеток (мейоз). Число хромосом для клеток каждого вида растений или животных постоянно. Это постоянство во всех клетках поддерживается благодаря митозу, которому предшествует удвоение хромосом. Как же поддерживается постоянство числа хромосом при половом размножении, когда новый организм возникает из слияния двух половых клеток? Созревшие половые клетки содержат только половинное (гаплоидное) число хромосом, а соответственно и половинное количество ДНК- В таблице приведено два примера, иллюстрирующих соотношение числа хромосом и количества ДНК в соматических и половых клетках кошки и кролика.

Уменьшение числа хромосом вдвое происходит в процессе созревания половых клеток. Внешне процесс созревания состоит из двух последующих делений: первого и второго. При этом из одного сперматоцита образуются четыре клетки и каждая из них превращается далее в сперматозоид. В овогенезе из овоцита образуется только одна яйцеклетка и три направительных тельца, т. е. тоже четыре клетки. Уменьшение числа хромосом происходит в процессе мейоза и определяется тем, что из каждой пары гомологичных хромосом остается в зрелой половой клетке только одна. Подготовка к мейозу, особенно при образовании яйцеклеток, начинается задолго до того, как наступит первое деление созревания. Начинается мейоз с синтеза ДНК и соответствующего удвоения количества хромосом, которое протекает так же, как и при митозе. Далее хромосомы в профазе мейоза укорачиваются, становятся хорошо различимыми, каждая из них оказывается удвоенной, но они не расходятся, оставаясь соединенными, и ведут себя как единое целое (2).

Вслед за удвоением хромосом происходит их конъюгация, которая состоит в том, что парные гомологичные и уже удвоившиеся хромосомы тесно сближаются и временно соединяются. Конъюгация происходит по всей длине хромосом — от одного ее конца до другого. При этом они скручиваются, и создается впечатление, что количество хромосом уменьшилось вдвое (3). Важно подчеркнуть, что временное объединение в пары (конъюгация) хромосом происходит всегда только между гомологичными (парными) хромосомами. После конъюгации хромосомы расходятся, но местами они соединяются настолько плотно, что при расхождении происходят разрывы в поперечном направлении и взаимный обмен участками. Этот процесс имеет огромное значение для понимания некоторых закономерностей наследования признаков, что будет подробно рассмотрено в главе IX.

После окончания конъюгации хромосомы расходятся и наступает метафаза первого деления созревания, внешне сходная с метафазой митоза, но расхождение хромосом происходит иначе, чем при митозе (4). Во время анафазы мейоза к противоположным полюсам расходятся гомологичные, уже удвоившиеся хромосомы. Таким образом, из каждой пары гомологичных хромосом в дочернюю клетку попадает только одна (5). Если учесть, что каждая пара гомологичных хромосом (на схеме одинаковой величины) состоит из одной отцовской, а другой материнской, которые обозначены на схеме различными цветами, то станет ясно, что после деления в сперматоцит попадает либо отцовская, либо материнская хромосома.

Вслед за первым наступает второе деление созревания. Теперь уже делению не предшествует синтез ДНК (6). Все хромосомы двойные, они располагаются в метафазе, как и при митозе, а в анафазе расходятся к противоположным полюсам, и в обеих дочерних клетках (сперматидах) оказывается одинаковый набор хромосом. Следовательно, перед началом мейоза происходит только одно удвоение хромосом, за которым следует два деления созревания, в результате чего количество хромосом уменьшается вдвое. Однако главное отличие мейоза от митоза состоит не только в этом. Удвоившиеся хромосомы конъюгируют и обмениваются отдельными участками. При митозе же хромосомы удваиваются и равномерно распределяются между дочерними клетками. При редукционном делении хромосомы из каждой гомологичной пары попадают в различные дочерние клетки.

Список литературы

  1. Азимов А. Краткая история биологии. М.,1997.
  2. Кемп П., Армс К. Введение в биологию. М.,2000.
  3. Либберт Э. Общая биология. М.,1978 Льоцци М. История физики. М.,2001.
  4. Найдыш В.М. Концепции современного естествознания. Учебное пособие. М.,1999.
  5. Небел Б. Наука об окружающей среде. Как устроен мир. М.,1993.

На уроке рассматривается процесс индивидуального развития разных групп живых организмов. Как развивается из единственной клетки целый организм? Какие стадии жизненного цикла общие у бабочки и человека? Что можно узнать, наблюдая за развитием животного от яйца до взрослой особи? Какое эволюционное значение имеет наличие свободно живущих личиночных стадий? Из урока вы сможете узнать об этом и многом другом.

Процесс индивидуального развития организма от начала его существования до конца жизни называют онтогенезом. У одноклеточных живых организмов, например у простейших или бактерий, онтогенез практически полностью совпадает с клеточным циклом и начинается в момент появления нового одноклеточного организма, то есть в момент разделения материнской клетки на две. Заканчивается онтогенез очередным делением этого организма (Рис. 1) или его гибелью от неблагоприятного воздействия.

Рис. 1. Разделение материнской клетки

У многоклеточных видов, размножающихся бесполым путем, онтогенез начинается с момента выделения группы клеток материнского организма. К примеру, почкование у гидры, которая, делясь, дает начало новому организму со всеми его признаками и свойствами (Рис. 2).

Рис. 2. Гидра

У организмов, размножающиеся половым путем, онтогенез начинается с момента оплодотворения, в результате которого образуется зигота - первая клетка будущего организма (Рис. 3).

Рис. 3. Зигота

Онтогенез - это индивидуальное развитие организма. Это совокупность последовательных морфологических, физиологических и биохимических преобразований, которые претерпевает организм от момента его появления до конца жизни.

Онтогенез включает рост, то есть увеличение массы и размеров организма, а также дифференцировку.

Термин «онтогенез» был введен в 1866 году Т. Геккелем. Онтогенез представляет собой реализацию наследственной информации. С генами родителей новый организм получает своего рода инструкцию о том, когда и какие изменения будут в нем происходить, для того чтобы он нормально смог пройти свой жизненный путь.

Рис. 4. Личинки

У животных выделяют три типа онтогенеза:

  1. Личиночный
  2. Яйцекладный
  3. Внутриутробный

Личиночный тип развития встречается, например, у насекомых, рыб и земноводных. Желтка в их яйцеклетках мало и зигота быстро развивается в личинку (Рис. 4), которая самостоятельно питается и растет. Затем происходит метаморфоз - превращение личинки во взрослый организм (Рис. 5).

Рис. 5. Бабочка

У некоторых видов наблюдается даже цепочка превращений из одной личинки в другую, а затем во взрослую особь. Смысл существования личинок может заключаться в том, что они питаются другой пищей нежели взрослая особь - таким образом расширяется пищевая база для данного вида.

Сравнительный пример - питание гусениц, которые питаются листьями, и бабочек, которые питаются нектаром; или головастиков, которые питаются зоопланктоном и лягушек которые питаются насекомыми (Рис. 6). Кроме того, в личиночной стадии многие виды активно заселяют новые территории. Например, личинки двустворчатых моллюсков Велигер способны к плаванью, а взрослые особи практически неподвижны (Рис. 7).

Рис. 6. Головастик - личинка лягушки

Рис. 7. Стадии развития моллюска Велигер

Яйцекладный тип онтогенеза встречается у рептилий, птиц и яйцекладущих млекопитающих. Яйцеклетка у них содержит большой запас питательных веществ, то есть много желтка, зародыш развивается внутри яйца, и личиночная стадия отсутствует (Рис. 8).

Рис. 8. Яйца разных животных

Внутриутробный тип онтогенеза наблюдается у большинства млекопитающих, в том числе у человека, при этом развивающийся зародыш задерживается в материнском организме, образуется временный орган - плацента, через который организм матери обеспечивает все потребности растущего эмбриона, а именно: дыхание, питание, выделение. Внутриутробное развитие оканчивается процессом деторождения.

Рис. 9. Эмбрион в утробе матери

Метаморфоз

Термин «метаморфоз» обозначает быстрое изменение, которое происходит при переходе от личиночной стадии к взрослой форме. Это процесс постэмбрионального созревания, который характерен для многих групп животных. Итак, первая группа - это кишечнополостные, стадия планула (рис. 10).

Рис. 10. Стадия планулы у кишечнополостных

Вторая группа - ленточные черви, личиночные стадии онкосфера и цистицерк (рис. 11).

Рис. 11. Стадии онкосфера и цистицерк у личиночных червей

Третья - полихеты, личиночная стадия трохофора (рис. 12).

Рис. 12. Стадия трохофоры у полихет

Ракообразные - личиночная стадия науплиус, зоеа, циприсовидная личинка (рис. 13).

Рис. 13. Стадии науплеус, зоеа и циприсовидная личинка ракообразных

Насекомые - личиночная стадия червеобразная личинка, гусеница, нимфа (рис. 14).

Рис. 14. Стадии гусеницы и нимфы у насекомых

Моллюски - личиночная стадия трохофора, велигер (рис. 15).

Рис. 15. Моллюски - личиночная стадия трохофора, велигер

Миноги - пескоройка (рис. 16).

Рис. 16. Стадия пескоройки у миног

Амфибии - головастик (рис. 17).

Рис. 17. Стадия головастика у амфибий

Некоторые личинки и взрослые организмы настолько различны, что сказать, что это разные этапы развития одного и того же организма, практически невозможно.

Адаптивное значение личиночных стадий

Личинки обычно служат для расселения вида. Это особенно важно для тех организмов, которые ведут прикрепленный образ жизни, для того чтобы избежать перенаселения на определенном участке.

Рис. 18. Личинка стрекозы

Личинка отличается от взрослой особи и по биологии питания и по своему местообитанию, способу передвижения и особенностям поведения. Благодаря этому один вид на разных этапах своего развития может пользоваться услугами, предоставленными по крайней мере двумя экологическими нишами.

Рис. 19. Взрослая особь стрекозы

Другая особенность личинок заключается в том, что они могут приспособиться к различным условиям. Нельзя сказать, что личиночная стадия - это примитивная стадия, и сами по себе личинки просты в своей организации. Некоторые личинки могут достигать очень сложного уровня организации, тем не менее, у них не сформированы половые органы и они неспособны размножаться. Тем не менее, даже здесь есть исключения. Например, у аксолотля - это личиночная стадия амбистомы (рис. 20) - даже половые органы развиты до такой степени, что он может размножаться. Это явление называется неотенией.

Рис. 20. Личинка амбистомы - аксолотль

Глохидий

У некоторых пресноводных двустворчатых моллюсков метаморфоз протекает с образованием особой личинки - глохидии (рис. 21). Глохидия имеет тонкостенную двустворчатую раковину с крючками на брюшной стороне, он плавает в воде, хлопая створками.

Рис. 21. Глохидия двустворчатых моллюсков

С помощью бисусной нити он прикрепляется к жабрам проплывающим рыб и затем зубцами внедряется в их ткани.

Рис. 22. Глохидия с бисусной нитью

Рис. 23. Взрослые двустворчатые моллюски

Любой вид онтогенеза многоклеточных животных принято делить на два периода:

  1. Эмбриональный
  2. Постэмбриональный

Эмбриональный начинается с момента оплодотворения. Это процесс формирования сложного многоклеточного организма. Он заканчивается моментом выхода личинки из личиночных оболочек при личиночном типе онтогенеза, выходом новой особи из яйца при яйцекладном типе онтогенеза или рождением новой особи при внутриутробном типе онтогенеза (рис. 24).

Рис. 24. Вылупливание пресмыкающегося из яйца и новорожденный ребенок

Постэмбриональный период начинается с завершением эмбрионального. Он включает в себя половое созревание, взрослое состояние, старение и заканчивается смертью. Продолжительность этих стадий сильно варьирует у разных групп организмов. Например, у большинства позвоночных организмов, большую часть своего существования особь находится во взрослом состоянии, а у многих насекомых взрослое состояние - самая короткая стадия и длится всего несколько часов. Она необходима лишь для воспроизведения потомства.

Список литературы

  1. А.А. Каменский, Е.А. Криксунов, В.В. Пасечник. Общая биология, 10-11 класс. - М.: Дрофа, 2005. По ссылке скачать учебник: ().
  2. Д. Беляев, Г. Дымшиц. Биология. 10-11 класс. Академический школьный учебник. - М.: Просвещение, 2012. - 304 с.
  3. В.В. Пасечник, Г.Г. Швецов. Биология. Общая биология. 10-11 классы. Рабочая тетрадь.- М.: Дрофа, 2011 (2013).
  4. А.П. Пуговкин, П.М. Скворцов, Н.А. Пуговкина. Биология. 10-11 классы. Базовый уровень. Практикум. - М.: Академия, 2008.

на русском языке:

  1. Словари и энциклопедии на Академике ().
  2. Википедия ().
  3. Megabook.ru ().

на английском языке:

  1. Википедия ().

Домашнее задание

  1. Что такое онтогенез? Какие бывают формы онтогенеза?
  2. Какие этапы онтогенеза выделяют?
  3. Под влиянием каких факторов происходит индивидуальное развитие организма?
  4. Как связано индивидуальное развитие организма с историей формирования вида?

Размножение - это способность живых существ воспроизводить себе подобных. При этом обеспечивается непрерывность и преемственность жизни. Принято различать два основных типа размножения: бесполое и половое.

Сравнительная характеристика бесполого и полового размножения

Показатель Способ размножения
бесполое половое
Родители Одна особь Обычно две особи (разного пола)
Потомство Генетически точная копия родителя (клон) Генетически отличны от обоих родителей
Главный клеточный механизм Митоз Мейоз
Время возникновения Раньше полового Позже бесполого
Клеточные источники наследственной информации для развития потомка Многоклеточные: одна или несколько соматических клеток родителя; одноклеточные: клетка- организм как целое Родители образуют половые клетки (гаметы)
Эволюционное значение Обеспечивает воспроизведение большого количества идентичных особей, поддерживает наибольшую приспособленность в маломеняющихся условиях обитания, способствует стабилизирующему естественному отбору. Более выгодно в относительно постоянных условиях Обеспечивает биологическое разнообразие видов, возможность освоения разнообразных условий обитания, увеличивает эволюционные перспективы, способствует движущему естественному отбору. Более выгодно в изменяющихся условиях

Бесполое размножение

Основными формами бесполого размножения являются деление, спорообразование, почкование, фрагментация и вегетативное размножение. В двух первых случаях новый организм образуется из одной клетки родительской особи, в остальных - из группы клеток.

Формы бесполого размножения

Форма Примеры Характеристика
Деление Свойственна одноклеточным организмам Самая простая форма бесполого размножения. Исходная материнская клетка делится на две или несколько более или менее одинаковых дочерних клеток. Множественное деление, когда одна материнская клетка даёт начало более чем двум дочерним клеткам, называетсяшизогонией .
Споруляция Встречается у всех растений, грибов и некоторых простейших Размножение посредством спор. Спора - это мелкая гаплоидная клетка, покрытая защитным покровом (споровой оболочкой), позволяющим переносить действие различных неблагоприятных факторов среды. У многих растений процесс образования спор (спорогенез) осуществляется в особых мешковидных структурах - спорангиях. У многих организмов споры служат не только для размножения, но и для расселения. Споры большинства организмов неподвижны и распространяются пассивно. Но у некоторых водорослей и грибов споры имеют жгутики (зооспоры ) и способны активно передвигаться.
Почкование Характерно для кишечнополостных На теле материнской особи появляется небольшой вырост (почка), а затем происходит отделение (отпочкование) дочерней особи. Почкование многоклеточных организмов не следует путать с формой деления клетки одноклеточных.
Фрагментация Свойственна для плоских, ленточных и кольчатых червей, иглокожих Заключается в распаде тела многоклеточного организма на две или более части, которые затем превращаются в самостоятельные особи. Фрагментация возможна благодаря регенерации - восстановлению утраченных частей тела.
Вегетативное размножение Характерно для многих групп растений - от водорослей до цветковых От материнского организма отделяется достаточно хорошо дифференцированная часть (отводки, усы, корневые отпрыски, поросль) или же образуются особые структуры, специально предназначенные для вегетативного размножения (луковицы, клубни, корневища и др.).
Клонирование Искусственный способ размножения, не встречающийся в естественных условиях Клон - совершенно одинаковое в генетическом отношении потомство, полученное в результате имплантации ядра соматической клетки донора в яйцеклетку. Таким образом, получают зиготу, минуя «классическое» оплодотворение.



Половое размножение

Половое размножение характерно для подавляющего большинства живых существ. Оно складывается из 4 основных процессов:

  1. Гаметогенез - образование половых клеток (гамет).
  2. Оплодотворение - слияние гамет и образование зиготы.
  3. Эмбриогенез - дробление зиготы и формирование зародыша.
  4. Постэмбриональный период - рост и развитие организма в послезародышевый период.

Половые клетки

Гаметы - половые клетки, при слиянии которых образуется зигота, из которой развивается новая особь. Гаметы имеют вдвое меньше хромосом, чем остальные клетки тела (соматические клетки). Они не способны делиться в отличие от большинства соматических клеток. Различают женские и мужские половые клетки. Половая принадлежность у высших форм (например, у позвоночных) определяется на генетическом уровне.
Мужские гаметы называются сперматозоидами (если они подвижны) или спермиями (если они лишены жгутикового аппарата и не способны активно передвигаться). Сперматозоиды имеют очень маленькие размеры. Они состоят из головки, шейки, средней части и хвоста (рис. 5.11).

В головке располагается ядро, содержащее ДНК. На переднем конце головки имеется акросома - видоизменённый комплекс Гольджи, который содержит литические ферменты для растворения оболочки яйцеклетки при оплодотворении. Хвост образован микротрубочками и служит для передвижения сперматозоида.

Женские гаметы называются яйцеклетками . Они, как правило, неподвижны, имеют б‚ольшие, чем сперматозоиды, размеры, хорошо развитую цитоплазму и запас питательных веществ.
Яйцеклетки разных организмов отличаются друг от друга. В зависимости от количества в яйцеклетке желтка их делят на алецитальные, олиголецитальные, мезолецитальные, полилецитальные. В зависимости от характера распределения желтка в яйцеклетке различают гомо- или изолецитальные, телолецитальные, центролецитальные яйцеклетки.

Типы яйцеклеток

Тип Характеристика Организмы
Изолецитальные (гомолецитальные) Относительно мелкие с небольшим количеством равномерно распределённого желтка. Ядро в них располагается ближе к центру Встречаются у червей, двустворчатых и брюхоногих моллюсков, иглокожих, ланцетника
Умеренно телолецитальные Имеют диаметр около 1,5–2 мм и содержат среднее количество желтка, основная масса которого сосредоточена на одном из полюсов (вегетативном) На противоположном полюсе (анимальном), где желтка мало, находится ядро яйцеклетки Характерны для осетровых рыб и земноводных
Резко телолецитальные Содержат очень много желтка, занимающего почти весь объём цитоплазмы яйцеклетки. На анимальном полюсе находится зародышевый диск с активной, лишённой желтка цитоплазмой. Размеры этих яиц крупные - 10–15 мм и более. Встречаются у некоторых рыб, пресмыкающихся, птиц и яйцекладущих млекопитающих
Центролецитальные Характеризуются концентрацией желтка вокруг ядра, расположенного в центре, а периферические слои лишены питательных веществ Характерны для насекомых
Алецитальные Практически лишены желтка, имеют микроскопически малые размеры (0,1–0,3 мм) Характерны для плацентарных млекопитающих, в том числе и для человека

Образование половых клеток

Процесс образования половых клеток - гаметогенез - протекает в половых железах (гонадах). У высших животных женские гаметы образуются в яичниках , мужские - в семенниках . Процесс образования сперматозоидов называют сперматогенезом , яйцеклеток - оогенезом (или овогенезом) . Гаметогенез делят на несколько фаз: размножения, роста, созревания и выделяемую при сперматогенезе фазу формирования.

Фазы гаметогенеза

Стадии Число хромосом и хроматид Сперматогенез Овогенез
Размножение 2n4c Характеризуется многократными митотическими делениями клеток стенки семенника,приводящими к образованию многочисленныхсперматогоний . Эти клетки диплоидны. Фаза размножения у мужчин начинается с наступлением половой зрелости и продолжается постоянно в течение почти всей жизни Характеризуется многократными митотическими делениями клеток стенки яичника, приводящими к образованию многочисленных оогоний (овогоний) . Эти клетки диплоидны. В женском организме размножение оогоний начинается в эмбриогенезе и завершается к 3-му году жизни.
Рост 2n4c Сопровождается незначительным увеличением объёма цитоплазмы клеток, незначительным накоплением питательных веществ, необходимых для дальнейших делений, репликацией ДНК и удвоением хромосом. В фазе роста клетки получают названиесперматоцитов I порядка Сопровождается значительным увеличением объёма цитоплазмы клеток, значительным накоплением питательных веществ, необходимых для дальнейших делений, репликацией ДНК и удвоением хромосом. В фазе роста клетки получают название ооцитов (овоцитов) I порядка
Созревание 1n1c В результате первого мейотического деления образуются два одинаковыхсперматоцита II порядка , каждый из которых после второго деления мейоза формирует по две сперматиды .В результате фазы созревания из каждой диплоидной клетки формируются 4 гаплоидные сперматиды Профаза первого мейотического деления осуществляется ещё в эмбриональном периоде, а остальные события мейоза продолжаются после полового созревания организма. Каждый месяц в одном из яичников половозрелой женщины созревает одна яйцеклетка. При этом завершается I деление мейоза, образуются крупный ооцит II порядка и маленькое первое полярное (направительное) тельце, которые вступают во второе деление мейоза На стадии метафазы второго мейотического деления ооцит II порядка овулирует - выходит из яичника в брюшную полость, откуда попадает в яйцевод. Дальнейшее созревание его возможно лишь после слияния со сперматозоидом. Если оплодотворения не происходит, ооцит II порядка погибает и выводится из организма. В случае оплодотворения он завершает второе мейотическое деление, образуя зрелую яйцеклетку - оотиду (овотиду) - и второе полярное тельце. Полярные тельца никакой роли в оогенезе не играют и в конце концов погибают. В результате фазы созревания из каждой диплоидной клетки формируются гаплоидные клетки: 1 оотида и 3 полярных тельца.
Формирование 1n1c Из каждой сперматиды формируется сперматозоид с головкой, шейкой и хвостом. Эта стадия отсутствует.

Оплодотворение

Оплодотворение - это процесс слияния мужской и женской половых клеток (гамет), в результате которого образуется оплодотворённая яйцеклетка (зигота ). То есть из двух гаплоидных гамет образуется одна диплоидная клетка (зигота).
Различают наружное оплодотворение, когда половые клетки сливаются вне организма, и внутреннее , когда половые клетки сливаются внутри половых путей особи; перекрёстное оплодотворение, когда объединяются половые клетки разных особей; самооплодотворение - при слиянии гамет, продуцируемых одним и тем же организмом; моноспермию и полиспермию - в зависимости от числа сперматозоидов, оплодотворяющих одну яйцеклетку.
Для большинства видов животных, обитающих или размножающихся в воде, свойственно наружное перекрёстное оплодотворение, которое осуществляется по типу моноспермии. Подавляющее большинство наземных животных и некоторые водные виды имеют внутреннее перекрёстное оплодотворение, причём для части птиц и рептилий характерна полиспермия. Самооплодотворение встречается среди гермафродитов, да и то в исключительных случаях.
У человека процесс оплодотворения происходит в маточной трубе, куда после овуляции попадает ооцит II порядка и могут находиться многочисленные сперматозоиды. При контакте с яйцеклеткой акросома сперматозоида выделяет ферменты, разрушающие оболочки яйцеклетки и обеспечивающие проникновение сперматозоида внутрь. После проникновения сперматозоида яйцеклетка формирует на поверхности толстую непроницаемую оболочку оплодотворения , препятствующую полиспермии.
Проникновение сперматозоида стимулирует ооцит II порядка к дальнейшему делению. Он осуществляет анафазу и телофазу II мейотического деления и становится зрелым яйцом. В результате в цитоплазме яйцеклетки оказываются два гаплоидных ядра, называемых мужским и женским пронуклеусами , которые сливаются с образованием диплоидного ядра - зиготы .
У цветковых растений, кроме слияния гаплоидных гамет - одного из спермиев с яйцеклеткой и образования диплоидной зиготы, из которой развивается зародыш семени, происходит слияние второго спермия с диплоидной вторичной клеткой и образование триплоидных клеток , из которых образуется эндосперм. Этот процесс называется двойным оплодотворением .
Для некоторых групп организмов характерны типы полового размножения (без оплодотворения), один из которых называется партеногенез. Партеногенез - развитие организма из неоплодотворёной яйцеклетки. Характерен для многих общественных насекомых (муравьёв, пчёл, термитов), а также для коловраток, дафний и даже некоторых рептилий. Встречается и у растений (одуванчик).

ИНДИВИДУАЛЬНОЕ РАЗВИТИЕ ОРГАНИЗМОВ

Типы онтогенеза

Онтогенез - индивидуальное развитие организма от зарождения до конца жизни (смерти или нового деления). У видов, размножающихся половым путём, он начинается с оплодотворения яйцеклетки. У видов с бесполым размножением онтогенез начинается с обособления одной клетки или группы клеток материнского организма. У прокариот и одноклеточных эукариотических организмов онтогенез представляет собой, по сути, клеточный цикл, обычно завершающийся делением или гибелью клетки.
Онтогенез есть процесс реализации наследственной информации особи в определённых условиях среды.
Различают два основных типа онтогенеза: прямой и непрямой.
При прямом развитии рождающийся организм в основном сходен со взрослым, а стадия метаморфоза отсутствует.
При непрямом развитии образуется личинка, отличающаяся от взрослого организма внешним и внутренним строением, а также характером питания, способом передвижения и рядом других особенностей.

Онтогенез многоклеточных организмов подразделяют на периоды:

  • эмбриональный (развитие зародыша);
  • постэмбриональный (послезародышевое развитие).

Эмбриональное развитие

Эмбриональное развитие (эмбриогенез) начинается с момента оплодотворения, представляет собой процесс преобразования зиготы в многоклеточный организм и завершается выходом из яйцевых или зародышевых оболочек (при личиночном и неличиночном типах развития) либо рождением (при внутриутробном). Эмбриогенез включает процессы дробления, гаструляции, гисто- и органогенеза.

Эмбриогенез

Этапы Характеристика
Дробление Ряд последовательных митотических делений зиготы, в результате которых происходит образование бластомеров . Образовавшиеся бластомеры не увеличиваются в размерах. В процессе дробления суммарный объём зародыша не изменяется, а размеры составляющих его клеток уменьшаются. Характер дробления у разных групп организмов различен и определяется типом яйцеклетки. Различают полное дробление, когда зигота дробится целиком, и неполное , когда дробится только часть её. Полное дробление, в свою очередь, бывает равномерным , если образующиеся бластомеры примерно одинаковы по величине, инеравномерным , если они отличаются по размерам. Дробление бывает синхронным илиасинхронным в зависимости от того, одновременно или нет происходит деление бластомеров. В результате ряда дроблений образуется морула, а из неё бластула, или сразу бластула. Морула - многоклеточный зародыш, состоящий из группы тесно прилегающих друг к другу клеток и напоминающий тутовую ягоду. Бластула - многоклеточный шаровидный зародыш с однослойной стенкой и полостью внутри. Бластула образуется в результатебластуляции , когда бластомеры смещаются к периферии, образуя бластодерму, образующаяся при этом внутренняя полость заполняется жидкостью и становится первичной полостью тела - бластоцелью.
Гаструляция Процесс образования двух- или трёхслойного зародыша - гаструлы . Она образуется в результате перемещения клеток бластодермы. Образующиеся слои называютзародышевыми листками . Наружный слой клеток называется эктодермой , внутренний -энтодермой , слой клеток между ними называется мезодермой . Каждый из зародышевых листков дает начало тем или иным органам. В ряде случаев возможно смешанное происхождение.
В зависимости от типа бластулы клетки в ходе гаструляции перемещаются по-разному. Выделяют четыре основных способа гаструляции: инвагинация (впячивание), эпиболия (обрастание), иммиграция (проникновение внутрь), деламинация (расслоение), которые в чистом виде почти не встречаются, что даёт основание выделять пятый способ - смешанный (комбинированный).
Гисто- и органогенез Формирование тканей и органов зародыша в результате дифференцировки клеток и зародышевых листков. Дифференцировка - это процесс появления и нарастания морфологических, биохимических и функциональных различий между отдельными клетками и частями развивающегося зародыша. Процесс дифференцировки обеспечивается дифференциальной активностью генов, то есть активностью разных групп генов в различных типах клеток.
Из эктодермы образуются нервная система, эпидермис кожи и его производные (роговые чешуи, перья и волосы, зубы).Из мезодермы образуются мускулатура, скелет, выделительная, половая и кровеносная системы.
Из энтодермы образуются пищеварительная система и её железы (печень, поджелудочная железа), дыхательная система.




Постэмбриональное развитие

Постэмбриональное (послезародышевое) развитие начинается с момента рождения (при внутриутробном развитии зародыша у млекопитающих) или с момента выхода организма из яйцевых оболочек и продолжается вплоть до смерти живого организма. Постэмбриональное развитие сопровождается ростом. При этом он может быть ограничен определённым сроком или длиться в течение всей жизни.

ПРИМЕРЫ ЗАДАНИЙ
Часть А

А1. Двуслойное строение текла характерно для

1) кольчатых червей 3) кишечнополостных

2) насекомых 4) простейших

А2. Мезодермы нет у

1) дождевого червя 3) кораллового полипа

А3. Прямое развитие происходит у

1) лягушки 2) саранчи 3) мухи 4) пчелы

А4. В результате дробления зиготы образуется

1) гаструла 3) нейрула

2) бластула 4) мезодерма

А5. Из энтодермы развивается

1) аорта 2) мозг 3) легкие 4) кожа

А6. Отдельные органы многоклеточного организма закладываются на стадии

1) бластулы 3) оплодотворения

2) гаструлы 4) нейрулы

А7. Бластуляция – это

1) рост клеток

2) многократное дробление зиготы

3) деление клетки

4) увеличение зиготы в размерах

А8. Гаструла зародыша собаки – это:

1) зародыш с образовавшейся нервной трубкой

Статьи по теме: