Просто про нечеткие множества. Раздел Fuzzy Logic Toolbox. С.Д.Штовба. Введение в теорию нечетких множеств и нечеткую логику

Нечеткое множество - это множество пар , где x принимает некоторое информативное значение, а m(x) отображает x в единичный отрезок, принимая значения от 0 до 1. При этом m(x) представляет собой степень принадлежности x к чему-либо (0 - не принадлежит, 1 - принадлежит на все 100%).

Так, на пример, можно задать для числа 7 множество:

<0/1>,<0.4/3>,<1/7> Это множество говорит о том, что 7 - это на 0% единица, на 40% тройка и на 100% семерка.

Нечеткая переменная определяется как .

A - наименование переменной,

X={x} - область определения переменной, набор возможных значений x,

Ca={} - нечеткое множество, описывающее ограничения на возможные значения переменной A (семантику).

Пример: <"Семь",{1,3,7},{<0/1>,<0.4/3>,<1/7>}>. Этой записью мы определили соответствия между словом и некоторыми цифрами. Причем, как в названии переменной, так и в значениях x можно было использовать любые записи, несущие какую-либо информацию.

Лингвистическая переменная определяется как .

B - наименование переменной.

T - множество её значений (базовое терм-множество), состоит из наименований нечетких переменных, областью определения каждой из которых является множество X.

G - синтаксическая процедура (грамматика), позволяющая оперировать элементами терм-множества T, в частности - генерировать новые осмысленные термы. T`=T U G(T) задает расширенное терм-множество (U - знак объединения).

M - семантическая процедура, позволяющая приписать каждому новому значению лингвистической переменной нечеткую семантику, путем формирования нового нечеткого множества.

Нечеткое множество (или нечеткое число), описывает некотоpые понятия в фyнкциональном виде, т. е. такие понятия как "пpимеpно pавно 5", "скоpость чyть больше 300 км/ч" и т. д., как видно эти понятия невозможно пpедставить одним числом, хотя в pеальности люди очень часто пользyются ими.

Hечеткая пеpеменная это тоже самое, что и нечеткое число, только с добавлением имени, котоpым фоpмализyется понятие описуемое этим числом.

Лингвистическая пеpеменная это множество нечетких пеpеменных, она использyется для того чтобы дать словесное описание некотоpомy нечеткомy числy, полyченномy в pезyльтате некотоpых опеpаций. Т. е. пyтем некотоpых опеpаций подбиpается ближайшее по значению из лингвистической пеpеменной.

Хочy дать несколько советов для твоей пpоги. Hечеткие числа лyчше хpанить как отсоpтиpованное множество паp (соpтиpyется по носителям), за счет этого можно yскоpить выполнения всех логических и математических опеpаций. Когда pеализyешь аpифметические опеpации, то нyжно yчитывать погpешность вычислений, т. е. 2/4 <> 1/2 для компьютеpа, когда я с этим столкнyлся, мне пpишлось несколько yсложнить сpавнение паp, а сpавнений пpиходится делать много. Hосители в нечетких числах должны быть кpатными какому-нибуть числy, иначе pезyльтаты аpиф. опеpаций бyдyт "некpасивыми", т. е. pезyльтат бyдет неточным, особенно это видно пpи yмножении.

За счет хpанения нечетких чисел в отсоpтиpованном виде, я добился того что аpифметические опеpации y меня выполняются по почти линейной зависимости (во вpемени), т. е. пpи yвеличении количества паpа, скоpость вычислений падала линейно. Я пpидyмал и pеализовал точные аpиф. опеpации пpи котоpых не имеет значение кол-во и кpатность носителей, pезyльтат всегда бyдет точным и "кpасивым", т. е. если пеpвоначальные числа были похожи на пеpевеpнyтyю параболу, то и pезyльтат бyдет похожим, а пpи обычных опеpациях он полyчается стyпенчатым. Я так же ввел понятие "обpатные нечеткие числа" (хотя не до конца pеализовал), для чего они нyжны? Как ты знаешь пpи вычитании или делении число из котоpого вычитается дpyгое должно быть шиpе, а это большая пpоблема пpи pешении сложных ypавнений, вот "обpатные нечеткие числа" позволяют это делать.

Базовые операции над нечеткими множествами.

ОБЪЕДИНЕНИЕ: создается новое множество из элементов исходных множеств, причем для одинаковых элементов принадлежность берется максимальной.

A U B = {} Maub(x) = max {Ma(x), Mb(x)} ПЕРЕСЕЧЕНИЕ: создается новое множество из одинаковых элементов исходных множеств, принадлежность которых берется минимальной. A П B = {} Maпb(x) = min {Ma(x), Mb(x)} ДОПОЛНЕНИЕ: инвертируется принадлежность каждого элемента. C = ~A = {} Mc(x) = 1-Ma(x) СТЕПЕНЬ: принадлежность каждого элемента возводится в степень. CON - концентрация, степень=2 (уменьшает степень нечеткости) DIN - растяжение, степень=1/2 (увеличивает степень нечеткости) РАЗНОСТЬ: новое множество состоит из одинаковых элементов исходных множеств. A - B = {} Ma-b(x) = Ma(x)-Mb(a), если Ma(x)>Mb(x) иначе 0 НОСИТЕЛЬ: состоит из элементов исходного множества, принадлежности которых больше нуля. Supp(A) = {x|x?X /\ Ma(x)>0} УМНОЖЕНИЕ НА ЧИСЛО: принадлежности элементов домножаются на число. q*A = {} СУПРЕМУМ: Sup - точная верхняя грань (максимальное значение принадлежности, присутствующее в множестве).

НОРМАЛИЗАЦИЯ: нечеткое множество нормально если супремум множества равен единице. Для нормализации перечитывают принадлежности элементов:

M"a(x) = Ma(x)/(Sup Ma(x)) АЛЬФА-СРЕЗ: множество альфа уровня - те элементы исходного множества, принадлежность которых выше или равна заданного порога. Порог, равный 1/2, называют точкой перехода. Aq = {x|x?X /\ Ma(x)>q} НЕЧЕТКОЕ ВКЛЮЧЕНИЕ: степень включения нечеткого множества V(A1,A2) = (Ma1(x0)->Ma2(x0))&(Ma1(x1)->Ma2(x1))&.. По Лукасевичу: Ma1(x)->Ma2(x) = 1&(1-Ma1(x)+Ma2(x)) По Заде: Ma1(x)->Ma2(x) = (1-Ma1(x)) \/ Ma2(x) НЕЧЕТКОЕ РАВЕНСТВО: степень нечеткого равенства R(A1,A2) = V(A1,A2) & V(A2,A1)

Словарь

АДАПТАЦИЯ - Любое изменение в структуре или функции организма, которое позволяет ему выживать во внешней среде.

АЛЛЕЛИ - Возможные значения генов.

ГА - Генетический алгоритм. Интеллектуальное исследование произвольного поиска. . Представлен Holland 1975.

ГА МОДЕЛЬ ОСТРОВА (IMGA) - Популяция ГА разделена в несколько подсовокупностей, каждая из которых беспорядочно инициализирована и выполняет независимый последовательный ГА на собственной подпопуляции. Иногда, пригодные ветви решений мигрируют между подсовокупностями. [Например. Levine 1994].

ГЕНЫ - Переменные в хромосоме.

ГЕНЕТИЧЕСКИЙ ДРЕЙФ - Члены популяции сходятся к некоторой отметке пространства решения вне оптимума из-за накопления стохастических ошибок.

ГЕНОТИП - Фактическая структура. Кодированная хромосома.

ГП - Генетическое программирование. Прикладные программы использующие принципы эволюционной адаптации к конструкции процедурного кода.

ДИПЛОИД - В каждом участке хромосомы имеется пара генов. Это позволяет сохраняться долгосрочной памяти.

КГА - Компактный ГА (CGA). В CGA, две или больше совокупности ген постоянно взаимодействуют и взаимно развиваются.

КРОССИНГОВЕР - Обмен отрезками хромосом родителей. В диапазоне от 75 до 95% появляются самые лучшие особи.

ЛОКУС - Позиция гена в хромосоме.

МУТАЦИЯ - Произвольная модификация хромосомы.

СИНАПС - Вход нейрона.

СХЕМА (шемма) - Подмножество подобных хромосом, содержащих модель значений гена.

СХОДИМОСТЬ - Прогрессия к увеличивающейся однородности. Ген, как считают, сходится когда 95% популяции имеет то же самое значение .

УНС - Унифицированная нейронная сеть.

ФИТНЕС-ФУНКЦИЯ - Значение являющееся целевым функциональным значением решения. Оно также называется функцией оценки или функцией цели в проблемах оптимизации.

ФЕНОТИП - Физическое выражение структуры. Декодированный набор ген.

ХРОМОСОМА - Составляющий вектор, строка, или решение.

  • Д. -Э. Бэстенс, В. .М. Ван Ден Берг, Д. Вуд. .Hейронные сети и финансовые рынки.., Москва, научное издательство.ТВП., 1997.
  • Галушкин А. И. .Hейрокомпьютеры и их применение. Книга 1. Теория нейронных сетей.. Москва, Издательское предприятие редакции журнала.Радиотехника.,2000.
  • Тейво Кохонен, Гвидо Дебок.Анализ финансовых данных с помощью самоорганизующихся карт., Москва, издательский дом.Альпина., 2001.
  • Ф. Уоссерман. .Hейрокомпьютерная техника., Москва, издательство.Мир., 1992.
  • Шумский C. A. .Hейрокомпьютинг и его применение в экономике и бизнесе., Москва, издательство МИФИ, 1998.
  • А. И. Змитрович Интеллектуальные информационные системы. - Минск.: HТООО "Тетра Системс", 1997. - 368с.
  • В. В. Корнеев, А. Ф. Гарев, С. В. Васютин, В. В. Райх Базы данных. Интеллектуальная обработка информации. - М.: "Hолидж", 2000. - 352с.

В. Я. Пивкин, Е. П. Бакулин, Д. И. Кореньков

Нечеткие множества в системах управления

Под редакцией
доктора технических наук, профессора Ю.Н. Золотухина


Предисловие. 3

ВВЕДЕНИЕ.. 4

1. НЕЧЕТКИЕ МНОЖЕСТВА.. 5

Примеры записи нечеткого множества. 5

Основные характеристики нечетких множеств. 5

Примеры нечетких множеств. 6

О методах построения функций принадлежности нечетких множеств. 7

Операции над нечеткими множествами. 8

Наглядное представление операций над нечеткими множествами. 9

Свойства операций È и Ç. 9

Алгебраические операции над нечеткими множествами. 10

Расстояние между нечеткими множествами, индексы нечеткости. 13

Принцип обобщения. 16

2. НЕЧЕТКИЕ ОТНОШЕНИЯ.. 17

Операции над нечеткими отношениями. 18

Композиция двух нечетких отношений. 21

Условные нечеткие подмножества. 23

3. НЕЧЕТКАЯ И ЛИНГВИСТИЧЕСКАЯ ПЕРЕМЕННЫЕ.. 27

Нечеткие числа. 28

Операции над нечеткими числами. 28

Нечеткие числа (L-R)-типа. 29

4. НЕЧЕТКИЕ ВЫСКАЗЫВАНИЯ И НЕЧЕТКИЕ МОДЕЛИ СИСТЕМ... 32

Правила преобразований нечетких высказываний. 33

Способы определения нечеткой импликации. 33

Логико-лингвистическое описание систем, нечеткие модели. 35

Модель управления паровым котлом.. 36

Полнота и непротиворечивость правил управления. 39

Литература. 40

Предисловие

Пожалуй, наиболее поразительным свойством человеческого интеллекта является способность принимать правильные решения в обстановке неполной и нечеткой информации. Построение моделей приближенных рассуждений человека и использование их в компьютерных системах будущих поколений представляет сегодня одну из важнейших проблем науки.

Значительное продвижение в этом направлении сделано 30 лет тому назад профессором Калифорнийского университета (Беркли) Лотфи А. Заде (Lotfi A. Zadeh). Его работа "Fuzzy Sets", появившаяся в 1965 году в журнале Information and Control, ╬ 8, заложила основы моделирования интеллектуальной деятельности человека и явилась начальным толчком к развитию новой математической теории.

Что же предложил Заде? Во-первых, он расширил классическое канторовское понятие множества , допустив, что характеристическая функция (функция принадлежности элемента множеству) может принимать любые значения в интервале (0;1), а не только значения 0 либо 1. Такие множества были названы им нечеткими (fuzzy ). Л.Заде определил также ряд операций над нечеткими множествами и предложил обобщение известных методов логического вывода modus ponens и modus tollens.

Введя затем понятие лингвистической переменной и допустив, что в качестве ее значений (термов) выступают нечеткие множества, Л.Заде создал аппарат для описания процессов интеллектуальной деятельности, включая нечеткость и неопределенность выражений.

Дальнейшие работы профессора Л.Заде и его последователей заложили прочный фундамент новой теории и создали предпосылки для внедрения методов нечеткого управления в инженерную практику.

В последние 5-7 лет началось использование новых методов и моделей в промышленности. И хотя первые применения нечетких систем управления состоялись в Европе, наиболее интенсивно внедряются такие системы в Японии. Спектр приложений их широк: от управления процессом отправления и остановки поезда метрополитена, управления грузовыми лифтами и доменной печью до стиральных машин, пылесосов и СВЧ-печей. При этом нечеткие системы позволяют повысить качество продукции при уменьшении ресурсо и энергозатрат и обеспечивают более высокую устойчивость к воздействию мешающих факторов по сравнению с традиционными системами автоматического управления.

Другими словами, новые подходы позволяют расширить сферу приложения систем автоматизации за пределы применимости классической теории. В этом плане любопытна точка зрения Л.Заде: "Я считаю, что излишнее стремление к точности стало оказывать действие, сводящее на нет теорию управления и теорию систем, так как оно приводит к тому, что исследования в этой области сосредоточиваются на тех и только тех проблемах, которые поддаются точному решению. В результате многие классы важных проблем, в которых данные, цели и ограничения являются слишком сложными или плохо определенными для того, чтобы допустить точный математический анализ, оставались и остаются в стороне по той причине, что они не поддаются математической трактовке. Для того чтобы сказать что-либо существенное для проблем подобного рода, мы должны отказаться от наших требований точности и допустить результаты, которые являются несколько размытыми или неопределенными".

Смещение центра исследований нечетких систем в сторону практических приложений привело к постановке целого ряда проблем таких, как новые архитектуры компьютеров для нечетких вычислений, элементная база нечетких компьютеров и контроллеров, инструментальные средства разработки, инженерные методы расчета и разработки нечетких систем управления и многое другое.

Основная цель предлагаемого вниманию читателей учебного пособия - привлечь внимание студентов, аспирантов и молодых научных сотрудников к нечеткой проблематике и дать доступное введение в одну из интереснейших областей современной науки.

профессор Ю.Н.Золотухин

ВВЕДЕНИЕ

Математическая теория нечетких множеств, предложенная Л.Заде более четверти века назад, позволяет описывать нечеткие понятия и знания, оперировать этими знаниями и делать нечеткие выводы. Основанные на этой теории методы построения компьютерных нечетких систем существенно расширяют области применения компьютеров. В последнее время нечеткое управление является одной из самых активных и результативных областей исследований применения теории нечетких множеств. Нечеткое управление оказывается особенно полезным, когда технологические процессы являются слишком сложными для анализа с помощью общепринятых количественных методов, или когда доступные источники информации интерпретируются качественно, неточно или неопределенно. Экспериментально показано, что нечеткое управление дает лучшие результаты, по сравнению с получаемыми при общепринятых алгоритмах управления. Нечеткие методы помогают управлять домной и прокатным станом, автомобилем и поездом, распознавать речь и изображения, проектировать роботов, обладающих осязанием и зрением. Нечеткая логика, на которой основано нечеткое управление, ближе по духу к человеческому мышлению и естественным языкам, чем традиционные логические системы. Нечеткая логика, в основном, обеспечивает эффективные средства отображения неопределенностей и неточностей реального мира. Наличие математических средств отражения нечеткости исходной информации позволяет построить модель, адекватную реальности.

1. НЕЧЕТКИЕ МНОЖЕСТВА

Пусть E - универсальное множество, x - элемент E , а R - некоторое свойство. Обычное (четкое) подмножество A универсального множества E , элементы которого удовлетворяют свойству R , определяется как множество упорядоченных пар A = { m A (х )/х } , где

m A (х ) - характеристическая функция , принимающая значение 1 , если x удовлетворяет свойству R, и 0 - в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов x из E нет однозначного ответа "да-нет" относительно свойства R . В связи с этим, нечеткое подмножество A универсального множества E определяется как множество упорядоченных пар A = { m A (х )/х } , где

m A (х ) - характеристическая функция принадлежности (или просто функция принадлежности), принимающая значения в некотором вполне упорядоченном множестве M (например, M = ). Функция принадлежности указывает степень (или уровень) принадлежности элемента x подмножеству A . Множество M называют множеством принадлежностей . Если M = {0,1} , то нечеткое подмножество A может рассматриваться как обычное или четкое множество.

Нечеткое множество представляет собой совокупность элементов произвольной природы, относительно которых нельзя с полной определенностью утверждать – принадлежит ли тот или иной элемент рассматриваемой совокупности данному множеству или нет. Другими словами, нечеткое множество отличается от обычного множества тем, что для всех, или части его элементов не существует однозначного ответа на вопрос: «Принадлежит или не принадлежит тот или иной элемент рассматриваемому нечеткому множеству»

Для построения нечетких моделей систем само понятие нечеткого множества следует определить строго, чтобы исключить неоднозначность толкования тех или иных его свойств. Наиболее естественным и интуитивно понятным является задание области значений подобной функции как интервал действительных чисел, заключенных между 0 и 1 (включая и сами эти значения).

Математическое определение нечеткого множества. Формально нечеткое множество определяется как множество упорядоченных пар или кортежей вида:, гдеявляется элементом некоторого универсального множества, или универсума, а– функция принадлежности, которая ставит в соответствие каждому из элементовнекоторое действительное число из интервала, т.е. данная функция определяется в форме отображения:

При этом значение для некоторогоозначает, что элементопределенно принадлежит нечеткому множеству, а значениеозначает, что элементопределенно не принадлежит нечеткому множеству.

Формально конечное нечеткое множество в общем случае имеет вид:

Универсум - это множество, содержащее в рамках некоторого контекста все возможные элементы. Формально удобно считать, что функция принадлежности универсума как нечеткого множества тождественно равна единице для всех без исключения элементов:.

Пустое нечеткое множество , или множество, которое не содержит ни одного элемента, обозначаетсяи формально определяется как такое нечеткое множество, функция принадлежности которого тождественно равна нулю для всех без исключения элементов:

Формальное определение нечеткого множества не накладывает никаких ограничений на выбор конкретной функции принадлежности для его представления. Однако на практике удобно использовать те из них, которые допускают аналитическое представление в виде некоторой простой математической функции. Это упрощает не только соответствующие численные расчеты, но и сокращает вычислительные ресурсы, необходимые для хранения отдельных значений этих функций принадлежности.

Функция принадлежности – математическая функция, определяющая степень, с которой элементы некоторого множества принадлежат заданному нечеткому множеству. Данная функция ставит в соответствие каждому элементу нечеткого множества действительное число из интервалаЗадать конкретное нечеткое множество означает определить соответствующую ему функцию принадлежности.

При построении функций принадлежности для нечетких множеств следует придерживаться некоторых правил, которые предопределяются характером неопределенности, имеющей место при построении конкретных нечетких моделей.

С практической точки зрения с каждым нечетким множеством удобно ассоциировать некоторое свойство, которое характеризует рассматриваемую совокупность объектов универсума. При этом по аналогии с классическими множествами рассматриваемое свойство может порождать некоторый предикат, который вполне естественно назвать нечетким предикатом. Данный нечеткий предикат может принимать не одно из двух значений истинности («истина» или «ложь»), а целый континуум значений истинности, которые для удобства выбираются из интервала При этом значению «истина» по-прежнему соответствует число 1, а значению «ложь» - число 0.

Содержательно это означает следующее: чем в большей степени элемент обладает рассматриваемым свойством, тем более близко к 1 должно быть значение истинности соответствующего нечеткого предиката. И наоборот, чем в меньшей степени элементобладает рассматриваемым свойством, тем более близко к 0 должно быть значение истинности этого нечеткого предиката. Если элементопределенно не обладает рассматриваемым свойством, то соответствующий нечеткий предикат принимает значение «ложь» (или число 0). Если же элементопределенно обладает рассматриваемым свойством, то соответствующий нечеткий предикат принимает значение «истина» (или число 1).

Тогда в общем случае задание нечеткого множества с использованием специального свойства эквивалентно заданию такой функции принадлежности, которая содержательно представляет степень истинности соответствующего одноместного нечеткого предиката.

Понятие нечеткого отношения наряду с понятием самого нечеткого множества следует отнести к фундаментальным основам всей теории нечетких множеств. На основе нечетких отношений определяется целый ряд дополнительных понятий, используемых для построения нечетких моделей сложных систем.

В общем случае нечетким отношением, заданном на множествах (универсумах) , называется некоторое фиксированное нечеткое подмножество декартова произведения этих универсумов. Другими словами, если обозначить произвольное нечеткое отношение через, то по определению, где- функция принадлежности данного нечеткого отношения, которая определяется как отображение. Черезобозначен кортеж изэлементов, каждый из которых выбирается из своего универсума:

Нечеткая логика, которая служит основой для реализации методов нечеткого управления, более естественно описывает характер человеческого мышления и ход его рассуждений, чем традиционные формально-логические системы. Именно поэтому изучение и использование математических средств, для представления нечеткой исходной информации позволяет строить модели, которые наиболее адекватно отражают различные аспекты неопределенности, постоянно присутствующей в окружающей нас реальности.

Нечеткая логика предназначена для формализации человеческих способностей к неточным или приближенным рассуждениям, которые позволяют более адекватно описывать ситуации с неопределенностью. Классическая логика по своей сути игнорирует проблему неопределенности, поскольку все высказывания и рассуждения в формальных логических системах могут иметь только значение «истина» (И ,1) или значение «ложь» (Л ,0). В отличие от этого в нечеткой логике истинность рассуждений оценивается в некоторой степени, которая может принимать и другие отличныезначения. Нечеткая логика использует основные понятия теории нечетких множеств для формализации неточных знаний и выполнения приближенных рассуждений в той или иной предметной области.

В предложенной Л.Заде варианте нечеткой логики множество истинностных значений высказываний обобщается до интервала действительных значений , что позволяет высказыванию принимать любое значение истинности из этого интервала. Это численное значение является количественной оценкой степени истинности высказывания, относительно которого нельзя с полной уверенностью заключить о его истинности или ложности. Использование в качестве множества истинностных значений интервалапозволяет построить логическую систему, в рамках которой оказалось возможным выполнять рассуждения с неопределенностью и оценивать истинность высказываний.

Исходным понятием нечеткой логики является понятие элементарного нечеткого высказывания.

Элементарное нечеткое высказывание – это повествовательное предложение, выражающее законченную мысль, относительно которой мы можем судить об ее истинности или ложности только с некоторой степенью уверенности. В нечеткой логикестепень истинности элементарного нечеткого высказывания принимает значение из замкнутого интервала, причем 0 и 1 являются предельными значениями степени истинности и совпадают со значениями «ложь» и «истина» соответственно.

Нечеткая импликация или импликация нечетких высказываний А и В (читается – «ЕСЛИ А, ТО В») – называется бинарная логическая операция, результат которой является нечетким высказыванием, истинность которого может принимать значение, например, определяемое формулой предложенной Э.Мамдани:

Эту форму нечеткой импликации также называют нечеткой импликацией Мамдани или нечеткой импликациейминимума корреляции.

Классическая нечеткая импликация, предложенная Л.Заде:

Продукционные системы были разработаны в рамках исследований по методам искусственного интеллекта и нашли широкое применение для представления знаний и вывода заключений в экспертных системах, основанных на правилах. Поскольку нечеткий вывод реализуется на основе нечетких продукционных правил, рассмотрение базового формализма нечетких продукционных моделей приобретает самостоятельное значение. При этом нечеткие правила продукций не только во многом близки к логическим моделям, но и, что наиболее важно, позволяют адекватно представить практические знания экспертов в той или иной проблемной области.

Правило нечеткой продукции – под этим правилом понимается выражение вида:

где () – имя нечеткой продукции;- сфера применения нечеткой продукции;- условие применимости ядра нечеткой продукции;- ядро нечеткой продукции, в котором- условие ядра (или антецедент);- заключение ядра (или консеквент);- знак логической секвенции (или следования);- метод или способ определения количественного значения степени истинности заключения ядра;- коэффициент определенности или уверенности нечеткой продукции;- постусловия продукции.

Ядро продукции записывается в виде: , где А, В – некоторые выражения нечеткой логики, которые наиболее часто представляются в форме нечетких высказываний.

Продукционная нечеткая система представляет собой некоторое согласованное множество отдельных нечетких продукций в форме.

Нечеткое множество - ключевое понятие нечеткой логики. Пусть Е — универсальное множество, х — элемент Е, a R — некоторое свойство. Обычное (четкое) подмножество А универ-сального множества Е, элементы которого удовлетворяют свойству R, определяется как множество упорядоченных пар

А = { μ A (x ) / x },

где μ А (х) —характеристическая функция, принимающая значе-ние 1, если х удовлетворяет свойству R, и 0 - в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов х из Е нет однозначного ответа «да-нет» относительно свойства R. В связи с этим нечеткое подмножество А универсаль-ного множества Е определяется как множество упорядоченных пар

А = { μ A (x ) / x },

где μ А (х) характеристическая функция принадлежности (или просто функция принадлежности) , принимающая значения в некотором вполне упорядоченном множестве М (например, М = ).

Функция принадлежности указывает степень (или уровень) принадлежности элемента х подмножеству А. Множество М назы-вают множеством принадлежностей. Если М = {0, 1}, то нечеткое подмножество А может рассматриваться как обычное или четкое множество.

Примеры записи нечеткого множества

Пусть Е = {x 1 , x 2 , х з, x 4 , x 5 }, М = ; А — нечеткое множество, для которого μ A (x 1 )= 0,3; μ A (х 2 )= 0; μ A (х 3) = 1; μ A (x 4) = 0,5; μ A (х 5 )= 0,9.

Тогда А можно представить в виде

А = {0,3/x 1 ; 0/х 2 ; 1/х 3 ; 0,5/х 4 ; 0,9/х 5 },

или

А ={0,3/x 1 +0/х 2 +1/х 3 +0,5/х 4 +0,9/х 5 },

или

Замечание . Здесь знак «+» не является обозначением операции сложения, а имеет смысл объединения.

Основные характеристики нечетких множеств

Пусть М = и А — нечеткое множество с элементами из универсаль-ного множества Е и множеством принадлежностей М.

Величина называется высотой нечеткого множества А. Нечеткое множество А нормально, если его высота рав-на 1,т.е. верхняя граница его функции принадлежности равна 1 (= 1). При < 1нечеткое множество называется субнормальным.

Нечеткое множество пусто, если ∀x ϵ E μ A (x ) = 0. Непу-стое субнормальное множество можно нормализовать по формуле

Нечеткое множество унимодально, если μ A (x ) = 1 только на одном х из Е.

. Носителем нечеткого множества А является обычное под-множество со свойством μ A (x )>0, т.е. носитель А = {x /x ϵ E, μ A (x )>0}.

Элементы x ϵ E , для которых μ A (x ) = 0,5 , называются точками перехода множества А.

Примеры нечетких множеств

1. Пусть Е = {0, 1, 2, . . ., 10}, М = . Нечеткое множество «Несколько» можно определить следующим образом:

«Несколько» = 0,5/3 + 0,8/4 + 1/5 + 1/6 + 0,8/7 + 0,5/8; его характеристики: высота = 1, носитель = {3, 4, 5, 6, 7, 8}, точки перехода — {3, 8}.

2. Пусть Е = {0, 1, 2, 3,…, n ,}. Нечеткое множество «Малый» можно определить:

3. Пусть Е = {1, 2, 3, . . ., 100} и соответствует понятию «Возраст», тогда нечеткое множество «Молодой» может быть определено с помощью

Нечеткое множество «Молодой» на универсальном множестве Е" = {ИВАНОВ, ПЕТРОВ, СИДОРОВ,...} задается с помощью функции при-надлежности μ Молодой (x ) на Е = {1, 2, 3, . . ., 100} (возраст), называемой по отношению к Е" функцией совместимости, при этом:

где х — возраст СИДОРОВА.

4. Пусть Е = {ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,… } - множе-ство марок автомобилей, а Е" = — универсальное множество «Сто-имость», тогда на Е" мы можем определить нечеткие множества типа:

Рис. 1.1. Примеры функций принадлежности

«Для бедных», «Для среднего класса», «Престижные», с функциями при-надлежности вида рис. 1.1.

Имея эти функции и зная стоимости автомобилей из Е в данный момент времени, мы тем самым определим на Е" нечеткие множества с этими же названиями.

Так, например, нечеткое множество «Для бедных», заданное на уни-версальном множестве Е = { ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,...}, выглядит так, как показано на рис. 1.2.

Рис. 1.2. Пример задания нечеткого множества

Аналогично можно определить нечеткое множество «Скоростные», «Средние», «Тихоходные» и т. д.

5. Пусть Е — множество целых чисел:

Е = {-8, -5, -3, 0, 1, 2, 4, 6, 9}.

Тогда нечеткое подмножество чисел, по абсолютной величине близких к нулю, можно определить, например, так:

А = {0/-8 + 0,5/-5 + 0,6/-3 +1/0 + 0,9/1 + 0,8/2 + 0,6/4 + 0,3/6 + 0/9}.

О методах построения функций принадлежности нечет-ких множеств

В приведенных выше примерах использованы пря-мые методы, когда эксперт либо просто задает для каждого х ϵ Е значение μ А (х), либо определяет функцию совместимости. Как правило, прямые методы задания функции принадлежности ис-пользуются для измеримых понятий, таких как скорость, время, расстояние, давление, температура и т.д., или когда выделяются полярные значения.

Во многих задачах при характеристике объекта можно выде-лить набор признаков и для каждого из них определить полярные значения, соответствующие значениям функции принадлежности, 0 или 1.

Например, в задаче распознавания лиц можно выделить шкалы, приведенные в табл. 1.1.

Таблица 1.1. Шкалы в задаче распознавания лиц

x 1

высота лба

x 2

профиль носа

курносый

горбатый

длина носа

короткий

x 4

разрез глаз

цвет глаз

форма подбородка

остроконечный

квадратный

x 7

толщина губ

цвет лица

очертание лица

овальное

квадратное

Для конкретного лица А эксперт, исходя из приведенной шка-лы, задает μ A (х) ϵ , формируя векторную функцию принад-лежности { μ A (х 1 ) , μ A (х 2 ),…, μ A (х 9) }.

При прямых методах используются также групповые прямые методы, когда, например, группе экспертов предъявляют конкрет-ное лицо и каждый должен дать один из двух ответов: «этот че-ловек лысый» или «этот человек не лысый», тогда количество утвердительных ответов, деленное на общее число экспертов, дает значение μ лысый (данного лица). (В этом примере можно действо-вать через функцию совместимости, но тогда придется считать число волосинок на голове у каждого из предъявленных эксперту лиц.)

Косвенные методы определения значений функции принад-лежности используются в случаях, когда нет элементарных из-меримых свойств, через которые определяется интересующее нас нечеткое множество. Как правило, это методы попарных сравне-ний. Если бы значения функций принадлежности были нам из-вестны, например, μ A (х- i ) = ω i , i = 1, 2, ..., n ,то попарные срав-нения можно представить матрицей отношений А = { a ij }, где a ij = ω i / ω j (операция деления).

На практике эксперт сам формирует матрицу А , при этом пред-полагается, что диагональные элементы равны 1, а для элемен-тов симметричных относительно диагонали a ij = 1/a ij , т.е. если один элемент оценивается в α раз сильнее, чем другой, то этот по-следний должен быть в 1/α раз сильнее, чем первый. В общем случае задача сводится к поиску вектора ω, удовлетворяющего уравнению вида Aw = λ max w , где λ max — наибольшее собствен-ное значение матрицы А . Поскольку матрица А положительна по построению, решение данной задачи существует и является поло-жительным.

Можно отметить еще два подхода:

  • использование типовых форм кривых для задания функций принадлежности (в форме (L-R)-Типа - см. ниже) с уточнением их параметров в соответствии с данными эксперимента;
  • использование относительных частот по данным экспе-римента в качестве значений принадлежности.

Под четким множеством или просто множеством, обычно понимают некоторую совокупность определенных и различимых между собой объектов нашей интуиции и интеллекта мыслимую как единое целое. В данном высказывании отметим следующий момент: множество A есть совокупность определенных объектов. Это означает, что относительно любого х можно однозначно сказать, принадлежит ли он множеству A или нет.

Условие принадлежности элемента х множеству A можно записать, используя понятие функции принадлежности m(х), a именно

Следовательно, множество можно задать в виде совокупности пар: элемента и значения его функции принадлежности

A = {(х|m(х)} (1)

Пример 1. Кафедра предлагает пять элективных курсов x 1 , x 2 , x 3 , x 4 и x 5 . В соответствии с программой необходимо сд три курса. Студент выбрал для изучения курсы x 2 , х 3 и x 5 . Запишем этот факт с помощью функции принадлежности

где первый элемент каждой пары означает название курса, а второй - описывает факт принадлежности его к подмножеству выбранному данным студентом ("да" или "нет").

Примеров четких множеств можно привести бесконечно много: список студентов учебной группы, множество домов на данной улице города, множество молекул в капле воды и т.д.

Между тем, огромный объем человеческих знаний и связей с внешним миром включают такие понятия, которые нельзя назвать множествами в смысле (1). Их следует скорее считать классами с нечеткими границами, когда переход от принадлежности одному классу к принадлежности другому происходит постепенно, не резко. Тем самым предполагается, что логика человеческого рассуждения основывается не на классической двузначной логике, а на логике с нечеткими значениями истинности, - нечеткими связками и нечеткими правилами вывода . Вот несколько тому примеров: объем статьи примерно 12 страниц, большая часть территории, подавляющее превосходство в игре, группа из нескольких человек.

Остановимся на последнем примере. Ясно, что группа людей из 3, 5, или 9 человек принадлежит к понятию: "группа людей, состоящее из нескольких человек". Однако для них будет неодинаковой степень уверенности в принадлежности к этому понятию, которая зависит от различных, в том числе и от субъективных, обстоятельств. Формализовать эти обстоятельства можно, если предположить, что функция принадлежности может принимать любые значения на отрезке . Причем крайние значения предписываются в том случае, если элемент безусловно не принадлежит или однозначно принадлежит данному понятию. В частности, множество людей A из нескольких человек может быть описано выражением вида:


A = {(1½0), 2½0.1), 3½0.4), (4½1), (5½1), (6½1), (7½0.8), (8½0.3), (9½0.1), (a½0)

Приведем определение нечеткого множества, данное основателем теории нечетких множеств Л.А.Заде. Пусть х есть элемент конкретного универсального (так называемого базового) множества E. Тогда нечетким (размытым) множеством A заданным на базовом множестве E называют множество упорядоченных пар

A = {xúm A ((x)}, "x Î E,

где m A (х) - функция принадлежности , отображающая множество E в единичный интервал , т.е. m A (х): E ® .

Очевидно, что если область значений m A (х) ограничить двумя числами 0 и 1, то данное определение будет совпадать с понятием обычного (четкого) множества.

Функция принадлежности нечеткого множества может задаваться не только перечислением всех ее значений для каждого элемента базового множества, но и в виде аналитического выражения. Например, множество вещественных чисел Z очень близких к числу 2, может быть задано так:

Z = {xúm Z (x)}, "x Î R,

где m Z (x) = .

Множество же вещественных чисел Y, достаточно близких к числу 2, есть

Y = {xúm Y (x)}, "x Î R,

M Y Z (x) = .

Графическое изображение этих двух функций принадлежности дано на рис.3.9.

Определение. Нечеткое множество A называется нечетким подмножеством B , если и A и B заданы на одном и том же базовом множестве E и "x Î E: m A (x) £ m B (x), что обозначают как A Ì B .

Условия равенства двух нечетких множеств A и B , заданных на одном и том же базовом множестве E, имеет следующий вид

A = B или "х Î E: m A (x) = m B (x).

Замечание . Между разными по своей сути понятиями "нечеткости" и "вероятности" чувствуется некоторое сходство. Во-первых, эти понятия используются в задачах, где встречается неопределенность либо неточность наших знаний или же принципиальная невозможность точных предсказаний результатов решений. Во-вторых, интервалы изменения и вероятности и функции принадлежности совпадают:

и P Î и m A (x) Î .

Вместе с тем вероятность является характеристикой объективной и выводы, полученные на основе применения теории вероятностей, в принципе могут быть проверены на опыте.

Функция же принадлежности определяется субъективно, хотя обычно она отражает реальные соотношения между рассматриваемыми объектами. Об эффективности применения методов, основанных на теории нечетких множеств, обычно судят после получения конкретных результатов.

Если в теории вероятностей предполагается, что вероятность достоверного события равна единице, т.е.

то соответствующая сумма всех значений функции принадлежности может принимать любые значения от 0 до ¥.

Итак, чтобы задать нечеткое множество A необходимо определить базовое множество элементов E, и сформировать функцию принадлежности m A (х), являющуюся субъективной мерой уверенности, с которой каждый элемент x из E принадлежит данному нечеткому множеству A .

Статьи по теме: