Недостатки теории струн. Теория струн — единая теория всего

Красивым поэтическим словосочетанием «теория струн» названо одно из направлений в теоретической физики, объединяющее в себе идеи теории относительности и квантовую механику. Данное направление физики занимается изучением квантовых струн – то есть одномерных протяженных объектов. В этом состоит его основное отличие от множества других разделов физики, в которых изучается динамика точечных частиц.

В своей основе Теория струн отрицает и утверждает, что Вселенная существовала всегда. То есть, Вселенная представляла собой не бесконечно малую точку, а струну с бесконечно малой длиной, при этом теория струн гласит о том, что мы живем в десятимерном пространстве, хотя ощущаем всего лишь 3-4. Остальные существуют в свернутом состоянии, и если вы решили задать вопрос: «Когда же они будут разворачиваться, и произойдет ли это вообще когда-нибудь?», то ответа вы не получите.

Математика его попросту не нашла – струнную теорию невозможно доказать опытным путем. Правда, были попытки разработать универсальную теорию, чтобы можно было проверять ее практически. Но чтобы это случилось, ее нужно сделать настолько упрощенной, чтобы она доходила до нашего уровня восприятия реальности. Тогда идея проверки полностью лишается смысла.

Основные критерии и понятия теории струн

Теория относительности говорит о том, что наша Вселенная – это плоскость, а квантовая механика заявляет, что на микроуровне происходит бесконечное движение, из-за которого искривляется пространство. А теория струн пытается соединить эти два предположения, и в соответствии с ней, элементарные частицы представляются в виде специальных компонентов в составе каждого атома – оригинальных струн, являющихся своеобразными ультрамикроскопическими волокнами. Элементарные частицы при этом обладают свойствами, которые объясняет резонансное колебание образующих эти частицы волокон. Подобными типами волокон осуществляются вибрации в бесконечном количестве.

Для более точного понимания сути, простой обыватель может представить себе струны обычных музыкальных инструментов, которые могут в разное время натягиваться, успешно сворачиваться, постоянно вибрировать. Такими же свойствами обладают нити, взаимодействующие друг с другом при определенных вибрациях.

Сворачиваясь в стандартные петли, нити образуют более крупные разновидности частиц – кварки, электроны, чья масса уже будет напрямую зависеть от уровня натянутости и частоты вибрации волокон. Так что энергию струн соотносят именно с этими критериями. Масса элементарных частиц будет выше при большем количестве излучаемой энергии.

Насущные проблемы теории струн

При изучении теории струн ученые многих стран периодически сталкивались с целым рядом проблем и нерешаемых вопросов. Самым важным моментом можно считать недостаток математических формул, поэтому придать теории завершенный вид специалистам пока не удается.

Второй существенной проблемой является подтверждение сутью теории наличия 10-ти измерений, когда на самом деле ощутить мы можем всего 4 из них. Предположительно остальные 6 из них существуют в скрученном состоянии, и в реальном времени ощутить их не представляется возможным. Поэтому, хотя опровержение теории в корне невозможно, экспериментальное подтверждение пока тоже представляется довольно затруднительным.

При этом исследование теории струн стало явным толчком для развития оригинальных математических конструкций, а также топологии. Физика с ее теоретическими направлениями довольно прочно укоренилась в математике также с помощью изучаемой теории. Более того, сущность современной квантовой гравитации и материи смогли досконально понять, начав изучать гораздо глубже, чем было возможно до этого.

Поэтому исследования теории струн продолжаются непрерывно, а результатом многочисленных экспериментов, включая испытания на Большом адронном коллайдере, могут стать недостающие понятия и элементы. В этом случае физическая теория будет абсолютно доказанным и общепринятым явлением.

Теория относительности представляет Вселенную «плоской», но квантовая механика утверждает, что на микроуровне происходит бесконечное движение, искривляющее пространство. Теория струн объединяет эти идеи и представляет микрочастицы как следствие объединения тончайших одномерных струн, которые будут иметь вид точечных микрочастиц, следовательно, не могут наблюдаться экспериментально.

Данная гипотеза позволяет представить элементарные частицы, составляющие атом из ультрамикроскопических волокон, называемых струнами.

Все свойства элементарных частиц объясняются резонансным колебанием волокон, их образующих. Эти волокна могут совершать бесконечное множество вариантов вибраций. Данная теория предполагает объединение идей квантовой механики и теории относительности. Но из-за наличия множества проблем в подтверждении мыслей заложенных в ее основе большая часть современных ученых считают, что предложенные идеи не более чем самая обыкновенная профанация или другими словами — теория струн для чайников, то есть для людей, которые совершенно не разбираются в науке и строении окружающего мира.

Свойства ультрамикроскопических волокон

Чтобы понять их суть, можно представить струны музыкальных инструментов – они могут вибрировать, изгибаться, сворачиваться. Тоже происходит и с этими нитями, которые издавая определенные вибрации, взаимодействуют друг с другом, сворачиваются в петли и образуют более крупные частицы (электроны, кварки), масса которых зависит от частоты вибрации волокон и их натянутости – эти показатели определяют энергию струн. Чем больше излучаемая энергия, тем выше масса элементарной частицы.

Инфляционная теория и струны

Согласно инфляционной гипотезе, Вселенная была создана благодаря расширению микро пространства, размером в струну (длина Планка). По мере увеличения этой области растягивались и так называемые ультрамикроскопические волокна, теперь их длина соизмерима с размерами Вселенной. Они точно так же взаимодействуют между собой и производят те же вибрации и колебания. Выглядит это как производимый ими эффект гравитационных линз, искажающих лучи света дальних галактик. А продольные колебания порождают гравитационное излучение.

Математическая несостоятельность и другие проблемы

Одной из проблем считается математическая несостоятельность теории — физикам, изучающим ее, не хватает формул для приведения ее в завершенный вид. А вторая заключается в том, что данная теория полагает, о существовании 10 измерений, но мы ощущаем всего 4 – высота, ширина, длина и время. Ученые предполагают, что остальные 6 — в скрученном состоянии, наличие которых не ощущается в реальном времени. Также проблемой является не возможность экспериментального подтверждения этой теории, но и опровергнуть ее никто не может.

Ключевые вопросы:

Каковы фундаментальные компоненты Вселенной -«первокирпичики материи»? Существуют ли теории, способные объяснить все основные физические явления?

Вопрос: это реально?

На сегодняшний день и в обозримом будущем, непосредственное наблюдение в столь малых масштабах не представляется возможным. Физика находится в поиске, и проводимые эксперименты, например, по обнаружению суперсимметричных частиц или поиску дополнительных измерений на ускорителях могут указать, что теория струн находится на верном пути.

Является теория струн теорией всего, или нет, она дает нам в руки уникальный набор инструментов, позволяющий заглянуть в глубинные структуры реальности.

Теория струн


Макро и микро


При описании Вселенной, физика делит ее на две, казалось-бы, несовместимых половинки - квантовый микромир, и макромир, в рамках которого описывается гравитация.


Теория струн это противоречивая попытка объединения этих половинок в «Теорию всего».


Частицы и взаимодействия


Мир сделан из двух видов элементарных частиц - фермионов и бозонов. Фермионы это всё наблюдаемое вещество, а бозоны являются переносчиками четырех известных фундаментальных взаимодействий: слабого, электромагнитного, сильного и гравитационного. В рамках теории, называемой «Стандартно моделью», физикам удалось изящно описать и проверить три фундаментальных взаимодействи все, кроме самого слабого - гравитационного. Hа сегодняшний день Стандартная модель является наиболее точной и экспериментально подтвержденной моделью нашего мира.


Зачем нужна теория струн


Стандартная модель не включает гравитацию, не может описать центр черной дыры и Большой взрыв, не объясняет результаты некоторых экспериментов. Теория струн - это попытка разрешить эти проблемы и унифицировать материю и взаимодействия, заменив элементарные частицы крошечными вибрирующими струнами.



В основе теории струн лежит идея, что все элементарные частицы можно представить в виде одного элементарного «первокирпичика» - струны. Струны могут вибрировать, и разные моды таких колебании на большом удалении будут выглядеть для нас как различные элементарные частицы. Одна мода вибрации заставит струну выглядеть как фотон, другая - как электрон.


Существует даже мода, описывающая переносчик гра в ита цио н но го взаимодействия - гравитон! Варианты теории струн описывают струны двух видов: открытые (1) и замкнутые (2). Открытые струны имеют два конца (3), расположенных на мембрано-подобных структурах, называемых D-бранами, и их динамикой описываются три из четырех фундаментальных взаимодействии - все, за исключением гравитационного.


Замкнутые струны напоминают петли, они не привязаны к D- бранам - именно колебательные моды замкнутых струн представляются безмассовым гравитоном. Концы открытой струны могут соединяться, образуя замкнутую струну, которая, в свою очередь, может разрываться, превратившись в открытую, или сойтись и расщепиться на две замкнутые струны (5) - таким образом в теории струн гравитационное взаимодействие объединяется со всеми остальными



Струны - самые маленькие из всех объектов, которыми оперирует физика. Диапазон размеров V объектов, представленных на картинке выше, простирается на 34 порядка - если бы атом был размером с солнечную систему, то размер струны мог бы быть чуть больше атомного ядра.



Дополнительные измерения


Непротиворечивые теории струн возможны лишь в пространстве высшей размерности, где в дополнение к знакомым нам 4м пространственно-временным измерениям требуется 6 дополнительных. Теоретики полагают, что эти дополнительные измерения свернуты в неуловимо малые формы -пространства Калаби-Яу. Одной из проблем теории струн является то, что существует почти бесконечное количество вариантов свертки (ком пактификации) Калаби-Яу, позволяющее описать какой угодно мир, и пока нет никакой возможности найти тот вариант ко м па ктифи ка ци и, который бы позволял описать то, что мы видим вокруг.


Суперсимметрия


Большинство версий теории струн требует понятия суперсимметрии, в основе которого лежит идея о том, что фермионы (вещество) и бозоны (взаимодействия) суть есть проявления одного и того-же объекта, и могут превращаться друг в друга.


Теория всего?


Суперсимметрию в теорию струн можно включить 5ю различными способами, что приводит к 5 различным видам теории струн, из чего следует, что сама по себе теория струн не может претендовать на звание «теории всего». Все эти пять видов связаны между собой математическими преобразованиями, называемыми дуальностями, и это привело к пониманию, что все эти виды являются аспектами чего-то более общего. Эту более общую теорию называют М-Теорией.



Известно 5 различных формулировок теории струн, однако при ближайшем рассмотрении, выясняется что все они являются проявлениями более общей теории

В конечном счете все элементарные частицы можно представить в виде микроскопических многомерных струн, в которых возбуждены вибрации различных гармоник.

Внимание, пристегните покрепче ремни — и я попробую описать вам одну из самых странных теорий из числа серьезно обсуждаемых сегодня научных кругах, которая способна дать наконец окончательную разгадку устройства Вселенной. Теория эта выглядит настолько дико, что, вполне возможно, она правильна!

Различные версии теории струн сегодня рассматриваются в качестве главных претендентов на звание всеобъемлющей универсальной теории , объясняющей природу всего сущего. А это — своего рода Священный Грааль физиков-теоретиков, занимающихся теорией элементарных частиц и космологии. Универсальная теория (она же теория всего сущего ) содержит всего несколько уравнений, которые объединяют в себе всю совокупность человеческих знаний о характере взаимодействий и свойствах фундаментальных элементов материи, из которых построена Вселенная. Сегодня теорию струн удалось объединить с концепцией суперсимметрии , в результате чего родилась теория суперструн , и на сегодняшний день это максимум того, что удалось добиться в плане объединения теории всех четырех основных взаимодействий (действующих в природе сил). Сама по себе теория суперсимметрии уже построена на основе априорной современной концепции, согласно которой любое дистанционное (полевое) взаимодействие обусловлено обменом частицами-носителями взаимодействия соответствующего рода между взаимодействующими частицами (см. Стандартная модель). Для наглядности взаимодействующие частицы можно считать «кирпичиками» мироздания, а частицы-носители — цементом.

В рамках стандартной модели в роли кирпичиков выступают кварки, а в роли носителей взаимодействия — калибровочные бозоны , которыми эти кварки обмениваются между собой. Теория же суперсимметрии идет еще дальше и утверждает, что и сами кварки и лептоны не фундаментальны: все они состоят из еще более тяжелых и не открытых экспериментально структур (кирпичиков) материи, скрепленных еще более прочным «цементом» сверхэнергетичных частиц-носителей взаимодействий, нежели кварки в составе адронов и бозонов. Естественно, в лабораторных условиях ни одно из предсказаний теории суперсимметрии до сих пор не проверено, однако гипотетические скрытые компоненты материального мира уже имеют названия — например, сэлектрон (суперсимметричный напарник электрона), скварк и т. д. Существование этих частиц, однако, теориями такого рода предсказывается однозначно.

Картину Вселенной, предлагаемую этими теориями, однако, достаточно легко представить себе наглядно. В масштабах порядка 10 -35 м, то есть на 20 порядков меньше диаметра того же протона, в состав которого входят три связанных кварка, структура материи отличается от привычной нам даже на уровне элементарных частиц. На столь малых расстояниях (и при столь высоких энергиях взаимодействий, что это и представить немыслимо) материя превращается в серию полевых стоячих волн, подобных тем, что возбуждаются в струнах музыкальных инструментов. Подобно гитарной струне, в такой струне могут возбуждаться, помимо основного тона, множество обертонов или гармоник. Каждой гармонике соответствует собственное энергетическое состояние. Согласно принципу относительности (см. Теория относительности), энергия и масса эквивалентны, а значит, чем выше частота гармонической волновой вибрации струны, тем выше его энергия, и тем выше масса наблюдаемой частицы.

Однако, если стоячую волну в гитарной струне представить себе наглядно достаточно просто, стоячие волны, предлагаемые теорией суперструн наглядному представлению поддаются с трудом — дело в том, что колебания суперструн происходят в пространстве, имеющем 11 измерений. Мы привыкли к четырехмерному пространству, которое содержит три пространственных и одно временное измерение (влево-вправо, вверх-вниз, вперед-назад, прошлое-будущее). В пространстве суперструн всё обстоит гораздо сложнее (см. вставку). Физики-теоретики обходят скользкую проблему «лишних» пространственных измерений, утверждая, что они «скрадываются» (или, научным языком выражаясь, «компактифицируются») и потому не наблюдаются при обычных энергиях.

Совсем уже недавно теория струн получила дальнейшее развитие в виде теории многомерных мембран — по сути, это те же струны, но плоские. Как походя пошутил кто-то из ее авторов, мембраны отличаются от струн примерно тем же, чем лапша отличается от вермишели.

Вот, пожалуй, и всё, что можно вкратце рассказать об одной из теорий, не без основания претендующих на сегодняшний день на звание универсальной теории Великого объединения всех силовых взаимодействий. Увы, и эта теория небезгрешна. Прежде всего, она до сих пор не приведена к строгому математическому виду по причине недостаточности математического аппарата для ее приведения в строгое внутреннее соответствие. Прошло уже 20 лет, как эта теория появилась на свет, а непротиворечиво согласовать одни ее аспекты и версии с другими так никому и не удалось. Еще неприятнее то, что никто из теоретиков, предлагающих теорию струн (и, тем более суперструн) до сих пор не предложил ни одного опыта, на котором эти теории можно было бы проверить лабораторно. Увы, боюсь, что до тех пор, пока они этого не сделают, вся их работа так и останется причудливой игрой фантазии и упражнениями в постижении эзотерических знаний за пределами основного русла естествознания.

См. также:

1972

Квантовая хромодинамика

Сколько же всего измерений?

Нам, простым людям, всегда хватало и трех измерений. С незапамятных времен мы привыкли описывать физический мир в столь скромных рамках (саблезубый тигр в 40 метрах спереди, 11 метрах правее и 4 метрах выше меня — булыжник к бою!). Теория относительности приучила большинство из нас к тому, что время — суть четвертое измерение (саблезубый тигр не просто здесь — он здесь и сейчас угрожает нам!). И вот, начиная с середины ХХ века, теоретики повели разговоры, что на самом деле измерений еще больше — не то 10, не то 11, не то вообще 26. Конечно, без объяснений, почему мы, нормальные люди, их не наблюдаем, тут обойтись не могло. И тогда возникла концепция «компактификации» — слипания или схлопывания измерений.

Представим садовый поливочный шланг. Вблизи он воспринимается как нормальный трехмерный объект. Стоит, однако, отойти от шланга на достаточное расстояние — и он представится нам одномерным линейным объектом: его толщину мы попросту перестанем воспринимать. Именно о таком эффекте и принято говорить, как о компактификации измерения: в данном случае «компактифицированной» оказалась толщина шланга — слишком мала шкала масштаба измерения.

Именно так, по утверждениям теоретиков, исчезают из поля нашего экспериментального восприятия реально существующие дополнительные измерения, необходимые для адекватного объяснения свойств материи на субатомном уровне: они компактифицируются, начиная с шкалы масштабов порядка 10 -35 м, и современные методы наблюдения и измерительные приборы просто не в состоянии обнаружить структур столь малого масштаба. Возможно, всё именно так и есть, а возможно, всё обстоит совершенно по-другому. Пока нет таких приборов и методов наблюдения, все вышеприведенные доводы и контрдоводы так и останутся на уровне досужих спекуляций.

Теоретическая физика является малопонятной для многих, но в то же время несет первостепенное значение в изучении окружающего нас мира. Задача любого физика теоретика состоит в построении математической модели, теории способной объяснить те или иные процессы в природе.

Надобность

Как известно, физические законы макромира, то есть мира, в котором существуем мы, значительно отличаются от законов природы в микромире – в пределах которого обитают атомы, молекулы и элементарные частицы. Примером будет сложный для понимания принцип под названием карпускулярно-волновой дуализм, согласно которому микрообъекты (электрон, протон и другие) могут быть как частицами, так и волной.

Как и нам, физикам-теоретикам хочется описать мир кратко и понятно, что и есть основным призванием теории струн. С ее помощью можно объяснить некоторые физические процессы, как на уровне макромира, так и на уровне микромира, что делает ее универсальной, объединяющей другие ранее не связанные теории (общую теорию относительности и квантовую механику).

Суть

Согласно теории струн, весь мир строится не из частиц, как считается сегодня, а из бесконечно тонких объектов длиною в 10−35 м, имеющих способность совершать колебания, что позволяет провести аналогию со струнами. При помощи сложного математического механизма эти колебания можно связать с энергией, а значит и с массой, другими словами любая частица возникает в результате того или иного типа колебания квантовой струны.

Проблемы и особенности

Как и любая неподтвержденная теория, теория струн имеет ряд проблем, которые говорят о том, что она требует доработки. В число этих проблем входит, к примеру, таковая - в результате вычислений математически был новый тип частиц, которые не могут существовать в природе – тахионы, квадрат массы которых меньше нуля, а скорость перемещения превышает скорость света.

Другой же важной проблемой, или скорее особенностью есть существование теории струн лишь в 10-мерном пространстве. Почему же мы воспринимаем другие измерения? – Ученые пришли к выводу, что на очень маленьких масштабах эти пространства сворачиваются и замыкаются сами по себе, в результате чего нам не удается их определить.

Развитие

Существует два типа частиц: фермионы - частицы вещества, и бозоны – переносчики взаимодействия. К примеру, фотон является бозоном, переносящим электромагнитное взаимодействие, гравитон – гравитационное, или тот же бозон Хиггса, распространяющий взаимодействие с полем Хиггса. Так вот если теория струн учитывала лишь бозоны, то теория суперструн также учла и фермионы, что позволило избавиться от тахионов.

Конечный вариант принципа суперструн разработан Эдвардом Виттеном и называется «м-теория», согласно которой для объединения всех различных версий суперструнной теории следует ввести 11-тое измерение.

На этом, пожалуй, можно и закончить. Работы по решению проблем и доработки имеющейся математической модели усердно ведутся физиками-теоретиками разных стран мира. Возможно, вскоре мы наконец-то сможем понять структуру окружающего нас мира, однако оглядываясь на объем и сложность вышесказанного, очевидно, что полученное описание мира не будет понятно без определенной базы знаний в области физики и математики.

Статьи по теме: